无机材料学报 ›› 2014, Vol. 29 ›› Issue (11): 1127-1132.DOI: 10.15541/jim20140095 CSTR: 32189.14.10.15541/jim20140095
吁 霁, 夏 媛
收稿日期:
2014-03-04
修回日期:
2014-04-15
出版日期:
2014-11-20
网络出版日期:
2014-10-24
基金资助:
YU Ji, XIA Yuan
Received:
2014-03-04
Revised:
2014-04-15
Published:
2014-11-20
Online:
2014-10-24
摘要:
以棉纤维作为模板, 制备褶皱层状SnO2。通过XRD、SEM、TEM、CV、恒流充放电、EIS等测试手段对材料结构、形貌和电化学性能进行了表征。结果表明: 产物具有由粒径16~21 nm的SnO2纳米颗粒构成的褶皱状形貌。电化学测试表明该材料在电流密度70 mA/g时循环50次后放电比容量仍高达614 mAh/g, 甚至在电流密度为3000 mA/g时放电比容量仍达到405 mAh/g, 表现出优异的循环性能和倍率性能。
中图分类号:
吁 霁, 夏 媛. 牺牲棉纤维模板法制备褶皱状SnO2负极材料及其电化学性能[J]. 无机材料学报, 2014, 29(11): 1127-1132.
YU Ji, XIA Yuan. Synthesis of Corrugated SnO2 by Cotton Fibers Template Method and Its Electrochemistry Performance[J]. Journal of Inorganic Materials, 2014, 29(11): 1127-1132.
图5 样品n-SnO2与c-SnO2的充放电曲线(a)和循环性能曲线(b)
Fig. 5 Charge-discharge profiles of selected cycles (a) and cycling performance (b) of the samples c-SnO2 and n-SnO2
Samples | R?/(?•cm-2) | R1/(?•cm-2) | Rct/(?•cm-2) |
---|---|---|---|
c-SnO2 | 3.561 | 740.9 | 68.64 |
n-SnO2 | 1.418 | 7515.0 | 146.80 |
表1 阻抗模拟电路的参数
Table 1 Parameters of equivalent circuit model
Samples | R?/(?•cm-2) | R1/(?•cm-2) | Rct/(?•cm-2) |
---|---|---|---|
c-SnO2 | 3.561 | 740.9 | 68.64 |
n-SnO2 | 1.418 | 7515.0 | 146.80 |
[1] | TAEASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(15): 359-367. |
[2] | WINTER M, BESENHARD J O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta, 1999, 45(1/2): 31-50. |
[3] | COURTNEY I A, DAHN J R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. Journal of The Electrochemical Society, 1997, 144(6): 2045-2052. |
[4] | LIU JIN-PING, LI YUAN-YUAN, HUANG XIN-TANG, et al. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. Journal of Materials Chemistry, 2009, 19(13): 1859-1864. |
[5] | KIM T J, SON D, CHO J, et al. Enhanced electrochemical properties of SnO2 anode by AlPO4 coating. Electrochimica Acta, 2004, 49(25): 4405-4410. |
[6] | ZHAO YI, LI JIA-XIN, DING YUN-HAI, et al. A nanocomposite of SnO2 and single-walled carbon nanohorns as a long life and high capacity anode material for lithium ion batteries. RSC Advances, 2011, 1(5): 852-856. |
[7] | GUO QI, ZHENG ZHE, GAO HAI-LING, et al. SnO2/graphene composite as highly reversible anode materials for lithium ion batteries. Journal of Power Sources, 2013, 240(15): 149-154. |
[8] | LOU XIONG-WEN, DENG DA, LEE J Y, et al. Preparation of SnO2 carbon composite hollow spheres and their lithium storage properties. Chemistry of Materials, 2008, 20(20): 6562-6566. |
[9] | ZHENG CHUN-LONG, ZHENG XIANG-ZHEN, HONG ZHEN- SHENG, et al. Template-free synthesis of SnO2 nanost-ructural hollow spheres covered by nanorods. Materials Letters, 2011, 65(11): 1645-1647. |
[10] | LOU XIONG-WEN, LI CHANG-MING, ARCHER L A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Advanced Materials, 2009, 21(24): 2536-2539. |
[11] | HAN S, JANG B, KIM T, et al. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Advanced Functional Materials, 2005, 15(11): 1845-1850. |
[12] | MAO RUI, GUO HONG, TIAN DONG-XUE, et al. 2D SnO2 nanorod networks templated by garlic skins for lithium ion batteries. Materials Research Bulletin, 2013, 48(4): 1518-1522. |
[13] | MEDURI P, PENDYALA C, KUMAR V, et al. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano letters, 2009, 9(2): 612-616. |
[14] | KIM H, CHO J. Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. Journal of Materials Chemistry, 2008, 18(7): 771-775. |
[15] | ZHAO NA-HONG, WANG GAO-JUN, HUANG YAN, et al. Preparation of nanowire arrays of amorphous carbon nanotube- coated single crystal SnO2. Chemistry of Materials, 2008, 20(8): 2612-2614. |
[16] | YE JIAN-FENG, ZHANG HUI-JUAN, YANG RONG, et al. Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small, 2010, 6(2): 296-306. |
[17] | GUO HONG, MAO RUI, YANG XIANG-JUN, et al. Hollow nanotubular SnO2 with improved lithium storage. Journal of Power Sources, 2012, 219(1): 280-284. |
[18] | WANG YONG, LEE J Y, ZENG HUA-CHUN. Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chemistry of Materials, 2005, 17(15): 3899-3903. |
[19] | LI NAI-CHAO, MARTIN C R, SCROSATI B. A high-rate, high-capacity, nanostructured tin oxide electrode. Electrochemical and Solid-State Letters, 1999, 3(7): 316-318. |
[20] | JI LI-WEN, LIN ZHAN, GUO BING-KUN, et al. Assembly of carbon-SnO2 core-sheath composite nanofibers for superior lithium storage. Chemistry-A European Journal, 2010, 16(38): 11543-11548. |
[21] | WANG CEN, DU GAO-HUI, STÅHL K, et al. Ultrathin SnO2 nanosheets: oriented attachment mechanism, nonstoichiometric defects, and enhanced lithium-ion battery performances. The Journal of Physical Chemistry C, 2012, 116(6): 4000-4011. |
[22] | DING SHU-JIANG, LUAN DE-YAN, BOEY F Y C, et al. SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chemical Communications, 2011, 47(25): 7155-7157. |
[23] | LIU RUI-QING, LI NING, LI DE-YU, et al. Template-free synthesis of SnO2 hollow microspheres as anode material for lithium-ion battery. Materials Letters, 2012, 73(15): 1-3. |
[24] | GAO JING, ZHAO TAO, CHEN JIAN-BO. Composition, structure and property analysis of calotropis gigantea, kapok and cotton Fibers. Journal of Donghua University (Natural Science), 2012, 38(2): 151-155. |
[25] | ZHANG YU-ZHONG, CHEN XIU-LAN, LIU JIE, et al. Scanning tunneling microscopy of the ultrastructure of cotton fiber. Acta Biochimica et Biophysica Sinica, 2000, 32(5): 521-523. |
[26] | PARK M S, KANG Y-M, WANG GOU-XIU, et al. The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater., 2008, 18(3): 455-461. |
[27] | YU ZHEN-JUN, WANG YAN-LI, DENG HONG-GUI, et al. Synthesis and electrochemical performance of SnO2/graphene anode material for lithium ion batteries. Journal of Inorganic Materials, 2013, 28(5): 515-520. |
[28] | GAO MING-XIA, CHEN XUAN, PAN HONG-GE, et al. Ultrafine SnO2 dispersed carbon matrix composites derived by a Sol-Gel method as anode materials for lithium ion batteries. Electrochimica Acta, 2010, 55(28): 9067-9074. |
[29] | ZHANG HONG-KUN, SONG HUAI-HE, CHEN XIAO-HONG, et al. Preparation and electrochemical performance of SnO2@carbon nanotube core-shell structure composites as anode mater-ial for lithium-ion batteries. Electrochimica Acta, 2012, 59(1): 160-167. |
[30] | DEMIR-CAKAN R, HU YONG-SHENG, ANTONIETTI M, et al. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater., 2008, 20(4): 1227-1229. |
[31] | SUN XIAO-MING, LIU JUN-FENG, LI YA-DONG. Oxides@C core-shell nanostructures one-pot synthesis, rational conversion, and Li storage property. Chemistry of Materials, 2006, 18(15): 3486-3496. |
[32] | YIN XIAO-MING, LI CHENG-CHAO, ZHANG MING, et al. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. The Journal of Physical Chemistry C, 2010, 114(17): 8084-8088. |
[33] | DENG DA, LEE J Y. Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage. Chemistry of Materials, 2008, 20(5): 1841-1846. |
[34] | WANG JIA-ZHENG, DU NING, ZHANG HUI, et al. Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries. The Journal of Physical Chemistry C, 2011, 115(22): 11302-11305. |
[1] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[2] | 程节, 周月, 罗薪涛, 高美婷, 骆思妃, 蔡丹敏, 吴雪垠, 朱立才, 袁中直. 蛋黄壳结构FeF3·0.33H2O@N掺杂碳纳米笼正极材料的构筑及其电化学性能[J]. 无机材料学报, 2024, 39(3): 299-305. |
[3] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
[4] | 苏楠, 邱介山, 王治宇. 高容量氟掺杂碳包覆纳米硅负极材料: 气相氟化法制备及其储锂性能[J]. 无机材料学报, 2023, 38(8): 947-953. |
[5] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[6] | 宿拿拿, 韩静茹, 郭印毫, 王晨宇, 石文华, 吴亮, 胡执一, 刘婧, 李昱, 苏宝连. 基于ZIF-8的三维网络硅碳复合材料锂离子电池性能研究[J]. 无机材料学报, 2022, 37(9): 1016-1022. |
[7] | 王洋, 范广新, 刘培, 尹金佩, 刘宝忠, 朱林剑, 罗成果. 钾离子掺杂提高锂离子电池正极锰酸锂性能的微观机制[J]. 无机材料学报, 2022, 37(9): 1023-1029. |
[8] | 朱河圳, 王选朋, 韩康, 杨晨, 万睿哲, 吴黎明, 麦立强. 超高镍LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2正极材料的储锂稳定性的提升机制[J]. 无机材料学报, 2022, 37(9): 1030-1036. |
[9] | 冯锟, 朱勇, 张凯强, 陈长, 刘宇, 高彦峰. 勃姆石纳米片增强锂离子电池隔膜性能研究[J]. 无机材料学报, 2022, 37(9): 1009-1015. |
[10] | 陈莹, 栾伟玲, 陈浩峰, 朱轩辰. 基于应力场的锂离子电池正极多尺度失效研究[J]. 无机材料学报, 2022, 37(8): 918-924. |
[11] | 江依义, 沈旻, 宋半夏, 李南, 丁祥欢, 郭乐毅, 马国强. 双功能电解液添加剂对锂离子电池高温高电压性能的影响[J]. 无机材料学报, 2022, 37(7): 710-716. |
[12] | 苏东良, 崔锦, 翟朋博, 郭向欣. 石榴石型Li6.4La3Zr1.4Ta0.6O12对Si/C负极表面固体电解质中间相的调控机制研究[J]. 无机材料学报, 2022, 37(7): 802-808. |
[13] | 肖美霞, 李苗苗, 宋二红, 宋海洋, 李钊, 毕佳颖. 表面端基卤化Ti3C2 MXene应用于锂离子电池高容量电极材料的研究[J]. 无机材料学报, 2022, 37(6): 660-668. |
[14] | 田俊亭, 李晓兵, 丁伟艳, 聂生东, 梁柱. 软模板法制备高频超声换能器用1-3复合压电材料[J]. 无机材料学报, 2022, 37(5): 507-512. |
[15] | 王禹桐, 张非凡, 许乃才, 王春霞, 崔立山, 黄国勇. 水系锂离子电池负极材料LiTi2(PO4)3的研究进展[J]. 无机材料学报, 2022, 37(5): 481-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||