无机材料学报 ›› 2025, Vol. 40 ›› Issue (12): 1425-1432.DOI: 10.15541/jim20250041
郑元顺1(
), 余健2(
), 叶先峰1, 梁栋1, 朱婉婷1, 聂晓蕾1, 魏平1, 赵文俞1(
), 张清杰1
收稿日期:2025-02-02
修回日期:2025-04-13
出版日期:2025-12-20
网络出版日期:2025-04-27
通讯作者:
余 健, 副教授. E-mail: yujian@jju.edu;作者简介:郑元顺(1999-), 男, 硕士研究生. E-mail: yszheng@whut.edu.cn
ZHENG Yuanshun1(
), YU Jian2(
), YE Xianfeng1, LIANG Dong1, ZHU Wanting1, NIE Xiaolei1, WEI Ping1, ZHAO Wenyu1(
), ZHANG Qingjie1
Received:2025-02-02
Revised:2025-04-13
Published:2025-12-20
Online:2025-04-27
Contact:
YU Jian, associate professor. E-mail: yujian@jju.edu;About author:ZHENG Yuanshun (1999-), male, Master candidate. E-mail: yszheng@whut.edu.cn
Supported by:摘要: 全赫斯勒合金Fe2VAl具有机械强度较高、电输运性能好和组成元素地球丰度高的优势, 在热电领域受到广泛关注。然而, 该合金的高晶格热导率极大限制了热电优值(zT)的提升。本研究采用电弧熔炼法制备了一系列名义化学成分为Fe2V1+xAl1-x(x=0~0.21)的块体材料, 系统研究了V取代Al位对物相组成、显微结构、能带结构和热电输运性能的影响。结果表明, 所有材料均为部分无序的B2单相结构。V掺杂可将费米能级上移至导带, 大幅度增大载流子浓度, 并将功率因子提升至4.5 mW·K-2·m-1。同时, 由于质量与应力波动引起的声子散射作用增强, 晶格热导率显著降低。最终, x=0.15的材料的最大zT达到0.14, 与未掺杂Fe2VAl材料相比提升近280倍。该研究表明V取代Al位可以有效提升Fe2VAl合金的热电性能。
中图分类号:
郑元顺, 余健, 叶先峰, 梁栋, 朱婉婷, 聂晓蕾, 魏平, 赵文俞, 张清杰. V取代Al位提升全赫斯勒合金Fe2VAl的热电性能[J]. 无机材料学报, 2025, 40(12): 1425-1432.
ZHENG Yuanshun, YU Jian, YE Xianfeng, LIANG Dong, ZHU Wanting, NIE Xiaolei, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Boosting the Thermoelectric Performance of Full-Heusler Fe2VAl Alloy via Substituting Al Site with V[J]. Journal of Inorganic Materials, 2025, 40(12): 1425-1432.
Fig. 1 Crystal structure and phase composition obtained from XRD analysis (a) L21, B2, and A2 type crystal structures of Fe2VAl; (b) Powder XRD patterns of all Fe2V1+xAl1-x materials; (c) Changes of the diffraction peak of (220) plane with the doping amount increasing; (d) XRD Rietveld refinement result of V15; (e) Lattice parameter of all Fe2V1+xAl1-x materials obtained through Rietveld refinement
Fig. 2 Backscattered electron images and EDS mappings of selected Fe2V1+xAl1-x alloys (a-c) Backscattered electron images of (a) V00, (b) V12, and (c) V18; (d-f) EDS elemental mappings of V18
| Nom. Comp. | EDS Comp. | n/(×1020, cm-3) | μ/(cm2·V-1·s-1) | Nom. Comp. | EDS Comp. | n/(×1020, cm-3) | μ/(cm2·V-1·s-1) |
|---|---|---|---|---|---|---|---|
| Fe2VAl | Fe2V1.02Al | 3.5 | 11.5 | Fe2V1.12Al0.88 | Fe2V1.14Al0.87 | -29.6 | 5.9 |
| Fe2V1.03Al0.97 | Fe2V1.05Al0.95 | -10.0 | 10.1 | Fe2V1.15Al0.85 | Fe2V1.16Al0.82 | -57.8 | 4.7 |
| Fe2V1.06Al0.94 | Fe2V1.07Al0.91 | -13.7 | 13.4 | Fe2V1.18Al0.82 | Fe2V1.19Al0.81 | -59.5 | 4.2 |
| Fe2V1.09Al0.91 | Fe2V1.11Al0.90 | -35.5 | 3.8 | Fe2V1.21Al0.79 | Fe2V1.24Al0.77 | -86.0 | 2.7 |
Table 1 Nominal compositions, EDS-measured compositions, carrier concentrations, and carrier mobilities of Fe2V1+xAl1-x alloys at 300 K
| Nom. Comp. | EDS Comp. | n/(×1020, cm-3) | μ/(cm2·V-1·s-1) | Nom. Comp. | EDS Comp. | n/(×1020, cm-3) | μ/(cm2·V-1·s-1) |
|---|---|---|---|---|---|---|---|
| Fe2VAl | Fe2V1.02Al | 3.5 | 11.5 | Fe2V1.12Al0.88 | Fe2V1.14Al0.87 | -29.6 | 5.9 |
| Fe2V1.03Al0.97 | Fe2V1.05Al0.95 | -10.0 | 10.1 | Fe2V1.15Al0.85 | Fe2V1.16Al0.82 | -57.8 | 4.7 |
| Fe2V1.06Al0.94 | Fe2V1.07Al0.91 | -13.7 | 13.4 | Fe2V1.18Al0.82 | Fe2V1.19Al0.81 | -59.5 | 4.2 |
| Fe2V1.09Al0.91 | Fe2V1.11Al0.90 | -35.5 | 3.8 | Fe2V1.21Al0.79 | Fe2V1.24Al0.77 | -86.0 | 2.7 |
Fig. 3 Band structure and total density of states (TDOS) diagrams of the Fe2V1+xAl1-x alloys (a-c) Energy band structure diagrams for (a) V00, (b) V06 and (c) V15; (d) Corresponding TDOS diagram showing the rigid band shift of the Fermi level caused by doping
Fig. 4 Temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient, and (c) power factor for all Fe2V1+xAl1-x materials in the temperature range of 300-800 K
Fig. 5 Temperature dependence of (a) thermal conductivity, (b) electronic thermal conductivity, (c) lattice thermal conductivity, and (d) zT for all Fe2V1+xAl1-x alloys in the temperature range of 300-800 K
| [1] |
YANG G S, SANG L A, ZHANG C, et al. The role of spin in thermoelectricity. Nature Reviews Physics, 2023, 5(8): 466.
DOI |
| [2] | KIM H S, LIU W S, REN Z F. The bridge between the materials and devices of thermoelectric power generators. Energy & Environmental Science, 2017, 10(1): 69. |
| [3] |
PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66.
DOI |
| [4] |
HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554.
DOI PMID |
| [5] |
LABORATORY M, LIMITED D I, MIYUKIGAOKA. Improvement of the efficiency of thermoelectric energy conversion by utilizing potential barriers. Japanese Journal of Applied Physics, 1997, 36(1): 170.
DOI |
| [6] |
ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373.
DOI |
| [7] |
LAN Y C, MINNICH A J, CHEN G, et al. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Advanced Functional Materials, 2010, 20(3): 357.
DOI URL |
| [8] |
MAHAN G D, SOFO J O. The best thermoelectric. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15): 7436.
PMID |
| [9] | TAVARES S S, YANG K S, MEYERS M A. Heusler alloys: past, properties, new alloys, and prospects. Progress in Materials Science, 2023, 137: 101017. |
| [10] |
GRAF T, FELSER C, PARKIN S S P. Simple rules for the understanding of Heusler compounds. Progress in Solid State Chemistry, 2011, 39(1): 1.
DOI URL |
| [11] |
VAN DER REST C, DUPONT V, ERAUW J P, et al. On the reactive sintering of Heusler Fe2VAl-based thermoelectric compounds. Intermetallics, 2020, 125: 106890.
DOI URL |
| [12] |
HARI S R, SRINIVAS V, LI C R, et al. Thermoelectric properties of rare-earth doped Fe2VAl Heusler alloys. Journal of Physics- Condensed Matter, 2020, 32(35): 355706.
DOI URL |
| [13] |
KAWAHARADA Y, KUROSAKI K. Thermophysical properties of Fe2VAl. Journal of Alloys and Compounds, 2003, 352(1/2): 48.
DOI URL |
| [14] |
SHAMIM S K, DEVI P, SINGH S, et al. Thermoelectric properties of Fe2VAl in the temperature range 300-800 K: a combined experimental and theoretical study. Physica B-Condensed Matter, 2024, 673: 415496.
DOI URL |
| [15] |
HINTERLEITNER B, KNAPP I, PONEDER M, et al. Thermoelectric performance of a metastable thin-film Heusler alloy. Nature, 2019, 576(7785): 85.
DOI |
| [16] |
GARMROUDI F, PARZER M, RISS A, et al. Solubility limit and annealing effects on the microstructure & thermoelectric properties of Fe2V1-xTaxAl1-ySiy Heusler compounds. Acta Materialia, 2021, 212: 116867.
DOI URL |
| [17] | FUKUTA K, TSUCHIYA K, MIYAZAKI H, et al. Improving thermoelectric performance of Fe2VAl-based Heusler compounds via high-pressure torsion. Applied Physics A: Materials Science & Processing, 2022, 128(3): 184. |
| [18] |
ALLENO E. Review of the thermoelectric properties in nanostructured Fe2VAl. Metals, 2018, 8(11): 864.
DOI URL |
| [19] |
ALLENO E, DIACK-RASSELIO A, NOUTACK M S T. Optimization of the thermoelectric properties in self-substituted Fe2VAl. Physical Review Materials, 2023, 7(7): 075403.
DOI URL |
| [20] |
MIYAZAKI H, TANAKA S, IDE N, et al. Thermoelectric properties of Heusler-type off-stoichiometric Fe2V1+xAl1-x alloys. Materials Research Express, 2014, 1(1): 015901.
DOI URL |
| [21] |
DIACK-RASSELIO A, ROULEAU O, COULOMB L, et al. Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy. Journal of Alloys and Compounds, 2022, 920: 166037.
DOI URL |
| [22] |
GARMROUDI F, PARZER M, RISS A, et al. Anderson transition in stoichiometric Fe2VAl: high thermoelectric performance from impurity bands. Nature Communications, 2022, 13: 3599.
DOI |
| [23] |
CUI X, FENG Z, JIN Y. AutoFP: a GUI for highly automated Rietveld refinement using an expert system algorithm based on FullProf. Journal of Applied Crystallography, 2015, 48(5): 1581.
DOI URL |
| [24] |
PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Exchange and correlation in open systems of fluctuating electron number. Physical Review A, 2007, 76(4): 040501.
DOI URL |
| [25] | SHAM L J, KOHN W. One-particle properties of an inhomogeneous interacting electron gas. Physical Review B, 1966, 145(2): 561. |
| [26] |
MAIER S, DENIS S, ADAM S, et al. Order-disorder transitions in the Fe2VAl Heusler alloy. Acta Materialia, 2016, 121: 126.
DOI URL |
| [27] |
HINTERLEITNER B, GARMROUDI F, REUMANN N, et al. The electronic pseudo band gap states and electronic transport of the full-Heusler compound Fe2VAl. Journal of Materials Chemistry C, 2021, 9(6): 2073.
DOI URL |
| [28] |
OKAMURA H, KAWAHARA J, NANBA T, et al. Pseudogap formation in the intermetallic compounds (Fe1-xVx)3Al. Physical Review Letters, 2000, 84(16): 3674.
PMID |
| [29] |
NISHINO Y, KATO M, ASANO S, et al. Semiconductor-like behavior of electrical resistivity in Heusler-type Fe2VAl compound. Physical Review Letters, 1997, 79(10): 1909.
DOI URL |
| [30] |
KNAPP I, BUDINSKA B, MILOSAVLJEVIC D, et al. Impurity band effects on transport and thermoelectric properties of Fe2-xNixVAl. Physical Review B, 2017, 96(4): 045204.
DOI URL |
| [31] |
GARMROUDI F, RUSS A, PARZER M, et al. Boosting the thermoelectric performance of Fe2VAl-type Heusler compounds by band engineering. Physical Review B, 2021, 103(8): 085202.
DOI URL |
| [32] | SHIN W H, ROH J W, RYU B, et al. Enhancing thermoelectric performances of bismuth antimony telluride via synergistic combination of multiscale structuring and band alignment by FeTe2 Incorporation. ACS Applied Materials & Interfaces, 2018, 10(4): 3689. |
| [33] |
KIM H S, GIBBS Z M, TANG Y L. Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials, 2015, 3(4): 041506.
DOI URL |
| [34] |
YE X F, YU J, KE S Q, et al. Excellent thermoelectric performance of Fe2NbAl alloy induced by strong crystal anharmonicity and high band degeneracy. npj Quantum Materials, 2024, 9(1): 60.
DOI |
| [1] | 吴华鑫, 张骐昊, YAN Haixue, 王连军, 江莞. 纳米复合MgAgSb基合金的热电输运性能优化[J]. 无机材料学报, 2025, 40(9): 997-1004. |
| [2] | 缪鹏程, 王丽君, 沈紫怡, 黄莉, 袁宁一, 丁建宁. 微球状Ag2Se的溶剂热合成及其热电性能研究[J]. 无机材料学报, 2025, 40(12): 1373-1378. |
| [3] | 吴明轩, 李珺杰, 陈硕, 鄢永高, 苏贤礼, 张清杰, 唐新峰. 区熔n型Bi1.96Sb0.04Te2.70Se0.30热电材料均匀性研究[J]. 无机材料学报, 2025, 40(11): 1252-1260. |
| [4] | 汪波, 余健, 李存成, 聂晓蕾, 朱婉婷, 魏平, 赵文俞, 张清杰. Gd/Bi0.5Sb1.5Te3热电磁梯度复合材料的服役稳定性[J]. 无机材料学报, 2023, 38(6): 663-670. |
| [5] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
| [6] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
| [7] | 鲁志强, 刘可可, 李强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. p型多晶Bi0.5Sb1.5Te3合金类施主效应与热电性能[J]. 无机材料学报, 2023, 38(11): 1331-1337. |
| [8] | 江润璐, 吴鑫, 郭昊骋, 郑琦, 王连军, 江莞. UiO-67基导电复合材料的制备及其热电性能研究[J]. 无机材料学报, 2023, 38(11): 1338-1344. |
| [9] | 程成, 李建波, 田震, 王鹏将, 康慧君, 王同敏. In2O3/InNbO4复合材料的热电性能研究[J]. 无机材料学报, 2022, 37(7): 724-730. |
| [10] | 洪督, 牛亚然, 李红, 钟鑫, 郑学斌. 等离子喷涂TiC-Graphite复合涂层摩擦磨损性能[J]. 无机材料学报, 2022, 37(6): 643-650. |
| [11] | 刘丹, 赵亚欣, 郭锐, 刘艳涛, 张志东, 张增星, 薛晨阳. 退火条件对磁控溅射MgO-Ag3Sb-Sb2O4柔性薄膜热电性能的影响[J]. 无机材料学报, 2022, 37(12): 1302-1310. |
| [12] | 任培安, 汪聪, 訾鹏, 陶奇睿, 苏贤礼, 唐新峰. Te与In共掺杂对Cu2SnSe3热电性能的影响[J]. 无机材料学报, 2022, 37(10): 1079-1086. |
| [13] | 李铭清, 王林伟, 丁栋舟, 冯鹤. Mg共掺杂Gd3(Al,Ga)5O12:Ce晶体快发光的作用机理[J]. 无机材料学报, 2022, 37(10): 1123-1128. |
| [14] | 逯旭, 侯绩翀, 张强, 樊建锋, 陈少平, 王晓敏. Mg含量对Mg3(1+z)Sb2化合物热电传输性能的影响[J]. 无机材料学报, 2021, 36(8): 835-840. |
| [15] | 孙鲁超, 周翠, 杜铁锋, 吴贞, 雷一明, 李家麟, 苏海军, 王京阳. 光悬浮区熔定向凝固Al2O3/Er3Al5O12和Al2O3/Yb3Al5O12共晶陶瓷的制备与性能研究[J]. 无机材料学报, 2021, 36(6): 652-658. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||