无机材料学报 ›› 2023, Vol. 38 ›› Issue (3): 270-279.DOI: 10.15541/jim20220356 CSTR: 32189.14.10.15541/jim20220356
所属专题: 【能源环境】热电材料(202409); 【信息功能】大尺寸功能晶体(202409)
林思琪1,2,3(), 李艾燃4, 付晨光4, 李荣斌1, 金敏1,3()
收稿日期:
2022-06-24
修回日期:
2022-08-09
出版日期:
2023-03-20
网络出版日期:
2022-10-28
通讯作者:
金 敏, 教授. E-mail: jmaish@aliyun.com作者简介:
林思琪(1992-), 女, 博士, 副教授. E-mail: linsiqi0811@163.com
基金资助:
LIN Siqi1,2,3(), LI Airan4, FU Chenguang4, LI Rongbing1, JIN Min1,3()
Received:
2022-06-24
Revised:
2022-08-09
Published:
2023-03-20
Online:
2022-10-28
Contact:
JIN Min, professor. E-mail: jmaish@aliyun.comAbout author:
LIN Siqi (1992-), female, PhD, associate professor. E-mail: linsiqi0811@163.com
Supported by:
摘要:
Zintl相Mg3X2(X= Sb, Bi)基热电材料以其无毒性、价格低及性能高等优点而备受关注。与多晶相比, Mg3X2晶体在揭示材料本征热电性能、各向异性性质及电声输运调控策略等方面极具研究价值。本文系统归纳与总结近年Mg3X2基晶体的生长及热电性能发展现状。针对Mg3X2晶体生长过程中Mg元素易挥发和活泼金属性的难点, 多种技术如合适的温度冷却法、定向凝固法、助熔剂法、助熔剂坩埚下降法等被开发运用于生长Mg3X2晶体, 其中助熔剂坩埚下降法在获得大尺寸块状晶体方面更有竞争力。n型和p型Mg3Sb2晶体都呈现出各向异性的热电性能。调控晶体生长速度、Mg元素自补偿含量、杂质元素掺杂与固溶含量等手段, 都会影响Mg3X2晶体的电学性能和热学性能。目前p型和n型Mg3Sb2基晶体的最高ZT值可分别达到0.68和0.82。本文综述了Zintl相Mg3X2基晶体生长与热电性能的研究进展, 发现助熔剂坩埚下降法是制备大尺寸Mg3X2基晶体的关键, 通过元素掺杂及固溶方法调控载流子浓度和能带结构可以进一步提高Mg3X2基晶体性能。该生长方法和研究思路对将来Mg3X2基晶体制备与热电性能深入研究具有重要指导意义。
中图分类号:
林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279.
LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review[J]. Journal of Inorganic Materials, 2023, 38(3): 270-279.
图3 温度冷却法生长的Mg3Sb2晶体
Fig. 3 MgSb2 crystals grown by slow cooling method (a) XRD patterns of Mg3-xMnxSb2 crystal powder grown by slow cooling method; (b) XRD patterns of (001) cleavage plane; (c) Morphology of as grown Mg3-xMnxSb2 crystal; (d) SEM image of cleavage plane[48]; (e) Ag-doped Mg3Sb2 crystal grown by modified slow cooling method[50]
图4 定向凝固法生长Mg3Sb2晶体[51]
Fig. 4 MgSb2 crystals grown by directional solidification method[51] (a) Ag-doped Mg3Sb2 crystal growth diagram; (b) The as-grown crystal1. The graphite; 2. Raw materials; 3. Melting zone; 4. Graphite heater; 5. Induction coil; 6. Boron nitride baffle; 7. Solidified crystal; 8. Seed crystal
图5 助熔剂法生长Mg3Sb2-xBix晶体
Fig. 5 Mg3Sb2-xBix crystals grown by flux method (a) Sb flux grown Mg3Sb2[53]; (b) Te-doped Mg3Sb2 crystals[54]; (c) Mg flux grown Mg3Bi1.25Sb0.75 crystal[55]
图6 助熔剂法生长Mg3Sb2晶体[56]
Fig. 6 MgSb2 crystal grown by flux method[56] (a) Schematic diagram of Y-doped Mg3Sb2 crystal growth by flux Bridgman method; (b) As grown crystal; (c) Mg3Sb2 single crystal with the size of 8 mm×10 mm×25 mm
图7 Mg3Sb2-xBix晶体热电性能
Fig. 7 Thermoelectric properties of Mg3Sb2-xBix crystals (a) Thermoelectric properties of Mg3Sb2 crystals grown by modified temperature cooling method[50]; (b) Sb/Bi flux Bridgman method[56]; (c) Directional solidification method[51]; (d) Sb flux method[54]; (e) Mg flux method[55]
Method | Composition | Type | Shape and size | ZTmax | Year | Ref. |
---|---|---|---|---|---|---|
Temperature cooling | Mn-doped Mg3Sb2 | n | Flake, 6-7 mm | 0.11 (//ab plane, 500 K) | 2014 | [ |
Mg3Sb2-xBix | p | Flake, 6-7 mm | 0.006 (//ab plane, 300 K) | 2015 | [ | |
Ag-doped Mg3Sb2 | p | Bulk, 3 mm×6 mm×10 mm | 0.03 (//ab plane, 300 K) 0.12 (┴ab plane, 300 K) | 2021 | [ | |
Flux method | Mg3Sb2 (Sb Flux) | p | Flake, 6-7 mm | - | 2018 | [ |
Mg3Bi2 (Bi Flux) | p | Flake, 6-7 mm | - | 2018 | [ | |
Y-doped Mg3Sb2 (Mg Flux) | n | Flake, 3-8 mm | - | 2020 | [ | |
Y-doped Mg3Bi2 (Mg Flux) | n/p | Flake, 3-8 mm | - | 2020 | [ | |
Y-doped Mg3Bi1.25Sb0.75 (Mg Flux) | n | Flake, 3-10 mm | 0.82 (//ab plane, 325 K) | 2020 | [ | |
Te-doped Mg3Sb2 (Sb Flux) | n | Flake, 5-10 mm | 0.78 (//ab plane, 600 K) | 2020 | [ | |
Directional solidification | Ag-doped Mg3Sb2 | p | Ingot, ϕ 10 mm×50 mm | 0.62 (//ab plane, 800 K) 0.68 (┴ab plane, 800 K) | 2020 | [ |
Flux Bridgman | Y-doped Mg3Sb2 (Sb/Bi Flux) | n | Bulk, 8 mm×10 mm×25 mm | 0.60 (//ab plane, 700 K) 0.48 (┴ab plane, 700 K) | 2021 | [ |
表1 不同方法生长Mg3X2晶体及热电性能研究结果统计
Table 1 Growth results of Mg3X2 crystal by different methods and their thermoelectric properties
Method | Composition | Type | Shape and size | ZTmax | Year | Ref. |
---|---|---|---|---|---|---|
Temperature cooling | Mn-doped Mg3Sb2 | n | Flake, 6-7 mm | 0.11 (//ab plane, 500 K) | 2014 | [ |
Mg3Sb2-xBix | p | Flake, 6-7 mm | 0.006 (//ab plane, 300 K) | 2015 | [ | |
Ag-doped Mg3Sb2 | p | Bulk, 3 mm×6 mm×10 mm | 0.03 (//ab plane, 300 K) 0.12 (┴ab plane, 300 K) | 2021 | [ | |
Flux method | Mg3Sb2 (Sb Flux) | p | Flake, 6-7 mm | - | 2018 | [ |
Mg3Bi2 (Bi Flux) | p | Flake, 6-7 mm | - | 2018 | [ | |
Y-doped Mg3Sb2 (Mg Flux) | n | Flake, 3-8 mm | - | 2020 | [ | |
Y-doped Mg3Bi2 (Mg Flux) | n/p | Flake, 3-8 mm | - | 2020 | [ | |
Y-doped Mg3Bi1.25Sb0.75 (Mg Flux) | n | Flake, 3-10 mm | 0.82 (//ab plane, 325 K) | 2020 | [ | |
Te-doped Mg3Sb2 (Sb Flux) | n | Flake, 5-10 mm | 0.78 (//ab plane, 600 K) | 2020 | [ | |
Directional solidification | Ag-doped Mg3Sb2 | p | Ingot, ϕ 10 mm×50 mm | 0.62 (//ab plane, 800 K) 0.68 (┴ab plane, 800 K) | 2020 | [ |
Flux Bridgman | Y-doped Mg3Sb2 (Sb/Bi Flux) | n | Bulk, 8 mm×10 mm×25 mm | 0.60 (//ab plane, 700 K) 0.48 (┴ab plane, 700 K) | 2021 | [ |
[1] |
BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457.
DOI PMID |
[2] |
SHI X, CHEN L, UHER C. Recent advances in high-performance bulk thermoelectric materials. International Materials Reviews, 2016, 61(6): 379.
DOI URL |
[3] |
GAYNER C, KAR K K. Recent advances in thermoelectric materials. Progress in Materials Science, 2016, 83: 330.
DOI URL |
[4] |
HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward. Science, 2017, 357(6358): eaak9997.
DOI URL |
[5] | IOFFE A F, STILBANS L S, IORDANISHVILI E K, et al. Semiconductor thermoelements and thermoelectric cooling. Physics Today, 1959, 12(5): 42. |
[6] | MAO J, LIU Z, ZHOU J, et al. Advances in thermoelectrics. Advances in Physics, 2018, 67(2): 69. |
[7] |
WEI T R, QIN Y, DENG T, et al. Copper chalcogenide thermoelectric materials. Science China Materials, 2019, 62(1): 8.
DOI |
[8] |
ZHAO K, QIU P, SHI X, et al. Recent advances in liquid-like thermoelectric materials. Advanced Functional Materials, 2020, 30(8): 1903867.
DOI URL |
[9] |
SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: from materials and structures to devices. Chemical Reviews, 2020, 120(15): 7399.
DOI URL |
[10] |
ZHANG X, BU Z, SHI X, et al. Electronic quality factor for thermoelectrics. Science Advances, 2020, 6(46): eabc0726.
DOI URL |
[11] |
ZHU T, LIU Y, FU C, et al. Compromise and synergy in high- efficiency thermoelectric materials. Advanced Materials, 2017, 29(14): 1605884.
DOI URL |
[12] |
BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416): 414.
DOI |
[13] |
PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66.
DOI |
[14] |
ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373.
DOI |
[15] |
LIU H, SHI X, XU F, et al. Copper ion liquid-like thermoelectrics. Nature Materials, 2012, 11(5): 422.
DOI PMID |
[16] |
HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554.
DOI PMID |
[17] |
HSU K F, LOO S, GUO F, et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818.
DOI URL |
[18] |
GUPTA R P, MCCARTY R, SHARP J. Practical contact resistance measurement method for bulk Bi2Te3-based thermoelectric devices. Journal of Electronic Materials, 2014, 43(6): 1608.
DOI URL |
[19] |
PEI J, CAI B, ZHUANG H L, et al. Bi2Te3-based applied thermoelectric materials: research advances and new challenges. National Science Review, 2020, 7(12): 1856.
DOI URL |
[20] |
MAO J, CHEN G, REN Z. Thermoelectric cooling materials. Nature Materials, 2021, 20(4): 454.
DOI PMID |
[21] |
PINCHERLE L, RADCLIFFE J M. Semiconducting intermetallic compounds. Advances in Physics, 1956, 5(19): 271.
DOI URL |
[22] | SLACK G A. New materials and performance limits for thermoelectric cooling. CRC Handbook of Thermoelectrics, 2018: 407. |
[23] |
TAMAKI H, SATO H K, KANNO T. Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance. Advanced Materials, 2016, 28(46): 10182.
DOI URL |
[24] |
MAO J, SHUAI J, SONG S, et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials. Proceedings of the National Academy of Sciences, 2017, 114(40): 10548.
DOI URL |
[25] |
ZHANG J, SONG L, PEDERSEN S H, et al. Discovery of high- performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nature Communications, 2017, 8(1): 13901.
DOI |
[26] | KUO J J, KANG S D, IMASATO K, et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy & Environmental Science, 2018, 11(2): 429. |
[27] | IMASATO K, KANG S D, SNYDER G J. Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4for low-grade waste heat recovery. Energy & Environmental Science, 2019, 12(3): 965. |
[28] |
MAO J, ZHU H, DING Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2- based materials. Science, 2019, 365(6452): 495.
DOI URL |
[29] |
SHU R, ZHOU Y, WANG Q, et al. Mg3+δSbxBi2-x family: a promising substitute for the state-of-the-art n-type thermoelectric materials near room temperature. Advanced Functional Materials, 2019, 29(4): 1807235.
DOI URL |
[30] |
WOOD M, KUO J J, IMASATO K, et al. Improvement of low- temperature ZT in a Mg3Sb2-Mg3Bi2 solid solution via Mg-vapor annealing. Advanced Materials, 2019, 31(35): 1902337.
DOI URL |
[31] |
ZHANG F, CHEN C, YAO H, et al. High-performance N-type Mg3Sb2 towards thermoelectric application near room temperature. Advanced Functional Materials, 2020, 30(5): 1906143.
DOI URL |
[32] |
YING P, HE R, MAO J, et al. Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nature Communications, 2021, 12(1): 1121.
DOI PMID |
[33] |
MARTINEZ-RIPOLL M, HAASE A, BRAUER G. The crystal structure of α-Mg3Sb2. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1974, 30(8): 2006.
DOI URL |
[34] | LI A, FU C, ZHAO X, et al. High-performance Mg3Sb2-xBix thermoelectrics: progress and perspective. Research, 2020, 2020: 1934848. |
[35] |
ZHENG C, HOFFMANN R, NESPER R, et al. Site preferences and bond length differences in CaAl2Si2-type Zintl compounds. Journal of the American Chemical Society, 1986, 108(8): 1876.
DOI URL |
[36] |
OHNO S, IMASATO K, ANAND S, et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule, 2018, 2(1): 141.
DOI URL |
[37] |
BHARDWAJ A, RAJPUT A, SHUKLA A K, et al. Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Advances, 2013, 3(22): 8504.
DOI URL |
[38] |
MAO J, WU Y, SONG S, et al. Defect engineering for realizing high thermoelectric performance in n-type Mg3Sb2-based materials. ACS Energy Letters, 2017, 2(10): 2245.
DOI URL |
[39] |
SHUAI J, WANG Y, KIM H S, et al. Thermoelectric properties of Na-doped Zintl compound: Mg3-xNaxSb2. Acta Materialia, 2015, 93: 187.
DOI URL |
[40] |
ZHANG J, SONG L, SIST M, et al. Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials. Nature Communications, 2018, 9(1): 4716.
DOI |
[41] |
SUN X, LI X, YANG J, et al. Achieving band convergence by tuning the bonding ionicity in n-type Mg3Sb2. Journal of Computational Chemistry, 2019, 40(18): 1693.
DOI URL |
[42] |
SHI X, ZHAO T, ZHANG X, et al. Extraordinary n-type Mg3SbBi thermoelectrics enabled by yttrium doping. Advanced Materials, 2019, 31(36): 1903387.
DOI URL |
[43] |
ZHANG F, CHEN C, YAO H, et al. High-performance N-type Mg3Sb2 towards thermoelectric application near room temperature. Advanced Functional Materials, 2020, 30(5): 1906143.
DOI URL |
[44] |
SHI X, ZHANG X, GANOSE A, et al. Compromise between band structure and phonon scattering in efficient n-Mg3Sb2-xBix thermoelectrics. Materials Today Physics, 2021, 18: 100362.
DOI URL |
[45] |
ZHANG J, SONG L, IVERSEN B B. Rapid one-step synthesis and compaction of high-performance n-type Mg3Sb2 thermoelectrics. Angewandte Chemie International Edition, 2020, 59(11): 4278.
DOI URL |
[46] |
NAYEB-HASHEMI A A, CLARK J B. The Mg-Sb (magnesium- antimony) system. Bulletin of Alloy Phase Diagrams, 1984, 5(6): 579.
DOI URL |
[47] |
GRUBE G. Metallographische mitteilungen aus dem institut für anorganische chemie der universität göttingen. XXV. Über die legierungen des magnesiums mit kadmium, zink, wismut und antimon. Zeitschrift für Anorganische Chemie, 1906, 49(1): 72.
DOI URL |
[48] |
KIM S, KIM C, HONG Y K, et al. Thermoelectric properties of Mn-doped Mg-Sb single crystals. Journal of Materials Chemistry A, 2014, 2(31): 12311.
DOI URL |
[49] |
KIM S H, KIM C M, HONG Y K, et al. Thermoelectric properties of Mg3Sb2-xBix single crystals grown by Bridgman method. Materials Research Express, 2015, 2(5): 055903.
DOI URL |
[50] |
LI A, HU C, HE B, et al. Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor. Nature Communications, 2021, 12(1): 5408.
DOI PMID |
[51] |
LI X, XIE H, YANG B, et al. Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal. Journal of Materials Science: Materials in Electronics, 2020, 31(12): 9773.
DOI |
[52] |
JIN M, YANG W H, WANG X H, et al. Growth and characterization of ZnTe single crystal via a novel Te flux vertical Bridgman method. Rare Metals, 2021, 40(4): 858.
DOI |
[53] |
XIN J, LI G, AUFFERMANN G, et al. Growth and transport properties of Mg3X2 (X=Sb, Bi) single crystals. Materials Today Physics, 2018, 7: 61.
DOI URL |
[54] |
IMASATO K, FU C, PAN Y, et al. Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance. Advanced Materials, 2020, 32(16): 1908218.
DOI URL |
[55] | PAN Y, YAO M, HONG X, et al. Mg3(Bi, Sb)2 single crystals towards high thermoelectric performance. Energy & Environmental Science, 2020, 13(6): 1717. |
[56] |
JIN M, LIN S, LI W, et al. Nearly isotropic transport properties in anisotropically structured n-type single-crystalline Mg3Sb2. Materials Today Physics, 2021, 21: 100508.
DOI URL |
[57] |
JIN M, SHAO H, HU H, et al. Growth and characterization of large size undoped p-type SnSe single crystal by Horizontal Bridgman method. Journal of Alloys and Compounds, 2017, 712: 857.
DOI URL |
[58] |
KAIBE H, TANAKA Y, SAKATA M, et al. Anisotropic galvanomagnetic and thermoelectric properties of n-type Bi2Te3 single crystal with the composition of a useful thermoelectric cooling material. Journal of Physics and Chemistry of Solids, 1989, 50(9): 945.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 蔡豪, 汪琦航, 邹朝勇. 镁离子调控无定形碳酸钙制备一水碳酸钙结晶过程[J]. 无机材料学报, 2024, 39(11): 1275-1282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||