无机材料学报 ›› 2022, Vol. 37 ›› Issue (12): 1302-1310.DOI: 10.15541/jim20220107 CSTR: 32189.14.10.15541/jim20220107
所属专题: 【信息功能】柔性材料(202409)
刘丹1(), 赵亚欣1, 郭锐1, 刘艳涛2, 张志东1, 张增星1, 薛晨阳1
收稿日期:
2022-03-02
修回日期:
2022-04-17
出版日期:
2022-12-20
网络出版日期:
2022-04-26
作者简介:
刘 丹(1988-), 男, 博士, 副教授. E-mail: liudan235@nuc.edu.cn
基金资助:
LIU Dan1(), ZHAO Yaxin1, GUO Rui1, LIU Yantao2, ZHANG Zhidong1, ZHANG Zengxing1, XUE Chenyang1
Received:
2022-03-02
Revised:
2022-04-17
Published:
2022-12-20
Online:
2022-04-26
About author:
LIU Dan (1988-), male, PhD, associate professor. E-mail: liudan235@nuc.edu.cn
Supported by:
摘要:
MgAgSb是一种具有潜力且元素储量相对丰富的室温热电材料, 有望用于构建高性能可穿戴温差电池。本研究尝试在聚酰亚胺(PI)基底上磁控溅射制备MgAgSb薄膜, 并系统研究退火条件对其热电性能的影响。结果表明样品未形成纯相的MgAgSb柔性热电薄膜, 而是形成了由Ag3Sb、MgO及Sb2O4多相组成的柔性薄膜, 其中Ag3Sb起主要热电功能。不同气氛退火可以显著提升MgO-Ag3Sb-Sb2O4 (Mg-Ag-Sb)柔性薄膜的热电性能, 其中真空处理性能最佳。在真空条件下, 随着退火温度升高, 柔性薄膜的热电性能呈现先增加后减少的趋势, 当退火温度为573 K时热电性能最佳, 室温附近功率因子达到74.16 μW∙m-1∙K-2。并且, 薄膜表现出较好的柔性, 弯曲900次后, 电导率仅变化了14%。本研究为MgAgSb柔性热电薄膜的制备及可穿戴应用提供了参考。
中图分类号:
刘丹, 赵亚欣, 郭锐, 刘艳涛, 张志东, 张增星, 薛晨阳. 退火条件对磁控溅射MgO-Ag3Sb-Sb2O4柔性薄膜热电性能的影响[J]. 无机材料学报, 2022, 37(12): 1302-1310.
LIU Dan, ZHAO Yaxin, GUO Rui, LIU Yantao, ZHANG Zhidong, ZHANG Zengxing, XUE Chenyang. Effect of Annealing Conditions on Thermoelectric Properties of Magnetron Sputtered MgO-Ag3Sb-Sb2O4 Flexible Films[J]. Journal of Inorganic Materials, 2022, 37(12): 1302-1310.
图5 VAC523、H2/N2523和N2523的塞贝克系数(a)、电导率(b)、功率因子(c)和MAS-0的热电参数(d)随测试温度的变化曲线
Fig. 5 Testing temperature dependent Seebeck coefficient (a), electrical conductivity (b), power factor(c) of VAC523, H2/N2523 and N2523, and thermoelectric parameters (d) of MAS-0
图6 VAC523(a)、H2/N2523(b)和N2523(c)的载流子浓度和迁移率随测试温度的变化曲线
Fig. 6 Testing temperature dependent carrier concentration and mobility of VAC523(a), H2/N2523(b) and N2523(c)
图8 VACx (x=548 (a), 573 (b), 598 (c), 623 (d))薄膜的表面SEM照片, VAC573薄膜的表面高倍SEM照片(e)
Fig. 8 Surface SEM images of VACx (x=548 (a), 573 (b), 598 (c), 623 (d)) films, and high magnification surface SEM image of VAC573 film (e)
图10 VACx(x=523, 548, 573, 598)薄膜的塞贝克系数(a)、电导率(b)和功率因子(c) 随测试温度的变化曲线
Fig. 10 Testing temperature dependent Seebeck coefficient (a), electrical conductivity (b) and power factor (c) of VACx (x=523, 548, 573, 598)
图11 VACx(x=523 (a), 548 (b), 573 (c), 598 (d))的载流子浓度和迁移率随测试温度的变化曲线
Fig. 11 Testing temperature dependent carrier concentration and mobility of VACx(x=523 (a), 548 (b), 573 (c), 598 (d))
[1] |
SIDDIQUE A R M, MAHMUD S, HEYST B V. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renewable and Sustainable Energy Reviews, 2017, 73: 730-744.
DOI URL |
[2] |
HASAN M A M, WU H, YANG Y. Redox-induced electricity for energy scavenging and self-powered sensors. Journal of Materials Chemistry A, 2021, 9(35): 19116-19148.
DOI URL |
[3] |
SHANG H, GU H, DING F, et al. Recent advances in flexible thermoelectrics. Applied Physics Letters, 2021, 118(17): 170503.
DOI URL |
[4] |
KUMAR A, BANO S, GOVIND B, et al. A review on fundamentals, design and optimization to high ZT of thermoelectric materials for application to thermoelectric technology. Journal of Electronic Materials, 2021, 50(11): 6037-6059.
DOI URL |
[5] |
FAN Z, ZHANG Y, PAN L, et al. Recent developments in flexible thermoelectrics: from materials to devices. Renewable and Sustainable Energy Reviews, 2021, 137: 110448.
DOI URL |
[6] | JAZIRI N, BOUGHAMOURA A, MÜLLER J, et al. A comprehensive review of thermoelectric generators: technologies and common applications. Energy Reports, 2020, 6: 264-287. |
[7] |
ZHANG Q H, HUANG X Y, BAI S Q, et al. Thermoelectric devices for power generation: recent progress and future challenges. Advanced Engineering Materials, 2016, 18(2): 194-213.
DOI URL |
[8] |
RIMOLDI M, CECCHINI R, WIEMER C, et al. Effect of substrates and thermal treatments on metalorganic chemical vapor deposition-grown Sb2Te3 thin films. Crystal Growth & Design, 2021, 21(9): 5135-5144.
DOI URL |
[9] |
CHEN B, KRUSE M, XU B, et al. Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. Nanoscale, 2019, 11(12): 5222-5230.
DOI PMID |
[10] |
HAN C, TAN G, VARGHESE T, et al. High-performance PbTe thermoelectric films by scalable and low-cost printing. ACS Energy Letters, 2018, 3(4): 818-822.
DOI URL |
[11] | WEN D L, LIU X, BAO J F, et al. Flexible hybrid photo- thermoelectric generator based on single thermoelectric effect for simultaneously harvesting thermal and radiation energies. ACS Applied Materials & Interfaces, 2021, 13(18): 21401-21410. |
[12] |
GOTO M, SASAKI M, XU Y, et al. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology. Applied Surface Science, 2017, 407: 405-411.
DOI URL |
[13] |
KOBAYASHI A, KONAGAYA R, TANAKA S, et al. Optimized structure of tubular thermoelectric generators using n-type Bi2Te3 and p-type Sb2Te3 thin films on flexible substrate for energy harvesting. Sensors and Actuators A: Physical, 2020, 313: 112199.
DOI URL |
[14] | GHOSH A, AHMAD M, BISHT P, et al. Modifying the thermoelectric transport of Sb2Te3 thin films via the carrier filtering effect by incorporating size-selected gold nanoparticles. ACS Applied Materials & Interfaces, 2021, 13(11): 13226-13234. |
[15] |
KIRKHAM M J, SANTOS A M D, RAWN C J, et al. Ab initio determination of crystal structures of the thermoelectric material MgAgSb. Physical Review B, 2012, 85(14): 144120.
DOI URL |
[16] |
ZHAO H, SUI J, TANG Z, et al. High thermoelectric performance of MgAgSb-based materials. Nano Energy, 2014, 7: 97-103.
DOI URL |
[17] |
LIU Z, SHUAI J, MAO J, et al. Effects of antimony content in MgAg0.97Sbx on output power and energy conversion efficiency. Acta Materialia, 2016, 102: 17-23.
DOI URL |
[18] |
LIU Z, GAO W, MENG X, et al. Mechanical properties of nanostructured thermoelectric materials α-MgAgSb. Scripta Materialia, 2017, 127: 72-75.
DOI URL |
[19] |
LIU Z, WANG Y, GAO W, et al. The influence of doping sites on achieving higher thermoelectric performance for nanostructured α-MgAgSb. Nano Energy, 2017, 31: 194-200.
DOI URL |
[20] |
LIU Z, ZHANG Y, MAO J, et al. The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSb. Acta Materialia, 2017, 128: 227-234.
DOI URL |
[21] |
GAO W, YI X, CUI B, et al. The critical role of boron doping in the thermoelectric and mechanical properties of nanostructured α-MgAgSb. Journal of Materials Chemistry C, 2018, 6(36): 9821-9827.
DOI URL |
[22] |
OUELDNA N, PORTAVOCE A, BERTOGLIO M, et al. Seebeck coefficient in multiphase thin films. Materials Letters, 2020, 266: 127460.
DOI URL |
[23] |
OUELDNA N, PORTAVOCE A, BERTOGLIO M, et al. Phase transitions in thermoelectric Mg-Ag-Sb thin films. Journal of Alloys and Compounds, 2022, 900: 163534.
DOI URL |
[24] |
ZHAI J, WANG T, WANG H, et al. Strategies for optimizing the thermoelectricity of PbTe alloys. Chinese Physics B, 2018, 27(4): 047306.
DOI URL |
[25] |
HINES N J, YATES L, FOLEY B M, et al. Steady-state methods for measuring in-plane thermal conductivity of thin films for heat spreading applications. Review of Scientific Instruments, 2021, 92: 044907.
DOI URL |
[26] |
ZHENG Z H, ZHANG D L, NIU J Y, et al. Achieving ultrahigh power factor in n-type Ag2Se thin films by carrier engineering. Materials Today Energy, 2022, 24: 100933.
DOI URL |
[27] | ZENG X, REN L, XIE J, et al. Room-temperature welding of silver telluride nanowires for high-performance thermoelectric film. ACS Applied Materials & Interfaces, 2019, 11(41): 37892-37900. |
[28] |
LIU D, ZHAO Y, YAN Z, et al. Screen-printed flexible thermoelectric device based on hybrid silver selenide/PVP composite films. Nanomaterials, 2021, 11(8): 2042.
DOI URL |
[29] |
DING Y, QIU Y, CAI K, et al. High performance n-type Ag2Se film on Nylon membrane for flexible thermoelectric power generator. Nature Communications, 2019, 10(1): 841.
DOI URL |
[30] | JIANG C, DING Y, CAI K, et al. Ultrahigh performance of n-Type Ag2Se films for flexible thermoelectric power generators. ACS Applied Materials & Interfaces, 2020, 12(8): 9646-9655. |
[1] | 汪波, 余健, 李存成, 聂晓蕾, 朱婉婷, 魏平, 赵文俞, 张清杰. Gd/Bi0.5Sb1.5Te3热电磁梯度复合材料的服役稳定性[J]. 无机材料学报, 2023, 38(6): 663-670. |
[2] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[3] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[4] | 鲁志强, 刘可可, 李强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. p型多晶Bi0.5Sb1.5Te3合金类施主效应与热电性能[J]. 无机材料学报, 2023, 38(11): 1331-1337. |
[5] | 江润璐, 吴鑫, 郭昊骋, 郑琦, 王连军, 江莞. UiO-67基导电复合材料的制备及其热电性能研究[J]. 无机材料学报, 2023, 38(11): 1338-1344. |
[6] | 付师, 杨增朝, 李宏华, 王良, 李江涛. 复合烧结助剂对Si3N4陶瓷力学性能和热导率的影响[J]. 无机材料学报, 2022, 37(9): 947-953. |
[7] | 程成, 李建波, 田震, 王鹏将, 康慧君, 王同敏. In2O3/InNbO4复合材料的热电性能研究[J]. 无机材料学报, 2022, 37(7): 724-730. |
[8] | 任培安, 汪聪, 訾鹏, 陶奇睿, 苏贤礼, 唐新峰. Te与In共掺杂对Cu2SnSe3热电性能的影响[J]. 无机材料学报, 2022, 37(10): 1079-1086. |
[9] | 逯旭, 侯绩翀, 张强, 樊建锋, 陈少平, 王晓敏. Mg含量对Mg3(1+z)Sb2化合物热电传输性能的影响[J]. 无机材料学报, 2021, 36(8): 835-840. |
[10] | 杨枭, 苏贤礼, 鄢永高, 唐新峰. (GeTe)nBi2Te3的结构与热电性能研究[J]. 无机材料学报, 2021, 36(1): 75-80. |
[11] | 李周, 肖翀. 异层等价离子双掺杂策略优化BiCuSeO的热电性能[J]. 无机材料学报, 2019, 34(3): 294-300. |
[12] | 胡慧珊, 杨君友, 辛集武, 李思慧, 姜庆辉. SnO的歧化反应对SnTe热电性能的优化[J]. 无机材料学报, 2019, 34(3): 315-320. |
[13] | 黄志成, 姚瑶, 裴俊, 董金峰, 张波萍, 李敬锋, 尚鹏鹏. n型SnS热电材料的制备与性能研究[J]. 无机材料学报, 2019, 34(3): 321-327. |
[14] | 檀小芳, 端思晨, 王泓翔, 吴庆松, 李苗苗, 刘国强, 徐静涛, 谈小建, 邵和助, 蒋俊. 多掺杂协同调控碲化锡热导率和功率因子提升热电性能[J]. 无机材料学报, 2019, 34(3): 335-340. |
[15] | 刘虹霞, 李文, 张馨月, 李娟, 裴艳中. (Ag2Se)1-x(Bi2Se3)x的热电性能研究[J]. 无机材料学报, 2019, 34(3): 341-348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||