无机材料学报 ›› 2024, Vol. 39 ›› Issue (3): 330-336.DOI: 10.15541/jim20230462 CSTR: 32189.14.10.15541/jim20230462
所属专题: 【材料计算】材料模拟计算(202506)
TAM YU Puy Mang1,2(), 徐愉3, 高泉浩1,2, 周海琼1,2, 张振4, 尹浩1,5, 李真1,2,5(
), 吕启涛5, 陈振强1,2,5, 马凤凯1,2(
), 苏良碧4
收稿日期:
2023-10-09
修回日期:
2023-11-20
出版日期:
2024-03-20
网络出版日期:
2023-11-28
通讯作者:
李真, 教授. E-mail: ailz268@126.com;作者简介:
TAM YU Puy Mang (1997-), 女, 硕士研究生. E-mail: pmtamyu@outlook.com
TAM YU Puy Mang1,2(), XU Yu3, GAO Quanhao1,2, ZHOU Haiqiong1,2, ZHANG Zhen4, YIN Hao1,5, LI Zhen1,2,5(
), LÜ Qitao5, CHEN Zhenqiang1,2,5, MA Fengkai1,2(
), SU Liangbi4
Received:
2023-10-09
Revised:
2023-11-20
Published:
2024-03-20
Online:
2023-11-28
Contact:
LI Zhen, professor. E-mail: ailz268@126.com;About author:
TAM YU Puy Mang (1997-), female, Master candidate. E-mail: pmtamyu@outlook.com
Supported by:
摘要:
3 μm波段中红外激光处于大气传输窗口, 又可以作为基础光源, 是激光技术研究的前沿。目前, 铒离子激活的激光晶体材料是产生3 μm中红外激光的重要途径之一。然而, Er3+离子4I11/2激光上能级荧光寿命较短, 下能级4I13/2的寿命较长, 难以实现粒子数反转, 导致自终止现象。为了解决这一难题, 往往需要高浓度掺杂, 通过能量传递降低4I13/2能级的寿命。然而高浓度掺杂又会造成晶体热性能变差, 限制了掺Er3+激光晶体效率和功率。三阶铒离子容易在氟化物晶体中形成团簇, 导致稀土离子间距缩短, 即使在低掺杂浓度下稀土离子之间的能量传递作用仍较为显著。同时, 低浓度掺杂还可以减轻激光运转下晶体的热堆积效应。掺铒氟化物晶体已成为一类重要的高功率、高效率中红外激光材料。然而, 掺铒氟化物晶体的光谱性能与铒离子团簇结构之间的相互联系尚不明确, 制约了掺铒氟化物晶体光谱和激光性能的进一步发展。本文采用第一性原理计算模拟了铒离子在CaF2、SrF2和PbF2晶体中的团簇结构。结果显示, 铒离子团簇结构随基质晶体变化逐渐演变。结合模拟计算和实验表征定性揭示了不同晶体离子团簇与光谱性能的联系, 为掺铒氟化物中红外激光晶体材料的调控与设计提供参考。
中图分类号:
TAM YU Puy Mang, 徐愉, 高泉浩, 周海琼, 张振, 尹浩, 李真, 吕启涛, 陈振强, 马凤凯, 苏良碧. 掺铒CaF2、SrF2、PbF2晶体的光谱性能与团簇结构研究[J]. 无机材料学报, 2024, 39(3): 330-336.
TAM YU Puy Mang, XU Yu, GAO Quanhao, ZHOU Haiqiong, ZHANG Zhen, YIN Hao, LI Zhen, LÜ Qitao, CHEN Zhenqiang, MA Fengkai, SU Liangbi. Spectroscopic Properties and Optical Clusters in Erbium-doped CaF2, SrF2 and PbF2 Crystals[J]. Journal of Inorganic Materials, 2024, 39(3): 330-336.
Fig. 3 Selective excited and height normalized emission spectra of 4S3/2→4I15/2 transition in Er3+-doped fluoride (a) CaF2; (b) SrF2; (c) PbF2; Colorful figures are available on website
Symbol | Formation energy/eV | ||
---|---|---|---|
CaF2 | SrF2 | PbF2 | |
11|0|0|11 | -0.637 | - | - |
11|0|0|12 | -0.624 | -0.725 | -0.371 |
11|0|1|21 | -1.272 | - | - |
11|0|4|21 | - | - | -1.109 |
21|0|2|21 | -2.305 | -1.700 | -1.145* |
21|0|3|31 | -3.214 | -2.308 | - |
21|0|6|31 | - | - | -1.825 |
31|0|1|31 | -3.909 | -2.722* | -1.662* |
31|0|5|41 | -4.729 | - | - |
31|0|8|41 | -4.555 | -4.200 | -3.350 |
31|0|8|41-C | -4.628 | -4.220 | - |
41|1|0|41 | -4.328* | -2.865* | -1.511* |
41|0|8|41-O | -5.749 | -5.651 | -3.754 |
41|0|8|41-A1 | -5.781 | -5.655 | -3.807 |
41|0|8|51-O | -6.407 | - | - |
41|0|8|51-A | -6.564 | - | -4.280 |
51|0|8|51 | -7.860 | -7.233 | -4.760 |
61|0|8|51 | -8.568 | -8.134 | -5.360 |
61|0|8|61 | -9.042 | - | - |
Table S1 Formation energy of Er3+ clusters in CaF2, SrF2 and PbF2
Symbol | Formation energy/eV | ||
---|---|---|---|
CaF2 | SrF2 | PbF2 | |
11|0|0|11 | -0.637 | - | - |
11|0|0|12 | -0.624 | -0.725 | -0.371 |
11|0|1|21 | -1.272 | - | - |
11|0|4|21 | - | - | -1.109 |
21|0|2|21 | -2.305 | -1.700 | -1.145* |
21|0|3|31 | -3.214 | -2.308 | - |
21|0|6|31 | - | - | -1.825 |
31|0|1|31 | -3.909 | -2.722* | -1.662* |
31|0|5|41 | -4.729 | - | - |
31|0|8|41 | -4.555 | -4.200 | -3.350 |
31|0|8|41-C | -4.628 | -4.220 | - |
41|1|0|41 | -4.328* | -2.865* | -1.511* |
41|0|8|41-O | -5.749 | -5.651 | -3.754 |
41|0|8|41-A1 | -5.781 | -5.655 | -3.807 |
41|0|8|51-O | -6.407 | - | - |
41|0|8|51-A | -6.564 | - | -4.280 |
51|0|8|51 | -7.860 | -7.233 | -4.760 |
61|0|8|51 | -8.568 | -8.134 | -5.360 |
61|0|8|61 | -9.042 | - | - |
Symbol | Formation energy/eV | ||
---|---|---|---|
La3+ | Tb3+ | Y3+ | |
11|0|0|11 | -0.107 | - | - |
11|0|0|12 | -0.204 | -0.346 | -0.355 |
11|0|1|21 | -0.653 | -0.791 | - |
11|0|2|21 | - | - | -0.785 |
21|0|1|21 | -0.914 | - | - |
21|0|2|21 | - | -1.040 | -1.123 |
21|0|5|31 | - | -1.530 | -1.523 |
21|0|1|31 | -1.580 | - | - |
31|0|1|31 | -1.911 | -1.622* | -1.590* |
31|0|2|41 | -2.215 | - | - |
31|0|8|41 | -1.511* | -3.172 | -3.203 |
41|1|0|41 | -2.319 | -1.690* | -1.488* |
41|0|8|41-O | - | -3.452 | -3.542 |
41|0|8|41-A1 | - | -3.504 | -3.575 |
41|0|8|41-A2 | -2.132* | -3.383 | -3.417 |
41|0|8|51-A | -2.605 | -3.984 | -4.108 |
51|0|8|51 | -3.196 | -4.585 | -4.627 |
61|0|8|51 | -3.811 | -5.153 | -5.169 |
61|0|8|61 | -4.075 | - | - |
Table S2 Formation energy of the clusters in La3+:PbF2, Tb3+:PbF2 and Y3+:PbF2
Symbol | Formation energy/eV | ||
---|---|---|---|
La3+ | Tb3+ | Y3+ | |
11|0|0|11 | -0.107 | - | - |
11|0|0|12 | -0.204 | -0.346 | -0.355 |
11|0|1|21 | -0.653 | -0.791 | - |
11|0|2|21 | - | - | -0.785 |
21|0|1|21 | -0.914 | - | - |
21|0|2|21 | - | -1.040 | -1.123 |
21|0|5|31 | - | -1.530 | -1.523 |
21|0|1|31 | -1.580 | - | - |
31|0|1|31 | -1.911 | -1.622* | -1.590* |
31|0|2|41 | -2.215 | - | - |
31|0|8|41 | -1.511* | -3.172 | -3.203 |
41|1|0|41 | -2.319 | -1.690* | -1.488* |
41|0|8|41-O | - | -3.452 | -3.542 |
41|0|8|41-A1 | - | -3.504 | -3.575 |
41|0|8|41-A2 | -2.132* | -3.383 | -3.417 |
41|0|8|51-A | -2.605 | -3.984 | -4.108 |
51|0|8|51 | -3.196 | -4.585 | -4.627 |
61|0|8|51 | -3.811 | -5.153 | -5.169 |
61|0|8|61 | -4.075 | - | - |
Fig. S1 Salculated thermodynamic stable centers of Er3+ in fluoride (C) CaF2; (S) SrF2; (P) PbF2 Centers are divided into three groups, the monomers, cubic sublattice clusters and square antiprism structure clusters which are denoted as “1”, “2” and “3”, respectively
[1] | XUE Y Y, XU X D, SU L B, et al. Research progress of mid-infrared laser crystals. Journal of Synthetic Crystals, 2020, 49(8): 1347. |
[2] |
YANG J, ZHAO J B, LIU Y Y, et al. Near-infrared spectra and laser parameters of Yb3+ and Na+ codoped CaF2-SrF2 crystal. Chinese Journal of Luminescence, 2022, 43(3): 341.
DOI URL |
[3] |
YU T, ZHENG C Z, ZHAO S S, et al. Progress on application of Monte Carlo simulation in studying energy transfer mechanisms for rare-earth luminescent materials. Chinese Journal of Luminescence, 2022, 43(9): 1390.
DOI URL |
[4] |
DINERMAN B J, MOULTON P F. 3-µm CW laser operations in erbium-doped YSGG, GGG, and YAG. Optics Letters, 1994, 19: 1143.
DOI URL |
[5] |
KINTZ G J, ALLEN R, ESTEROWITZ L. CW and pulsed 2.8 μm laser emission from diode-pumped Er3+:LiYF4 at room temperature. Applied Physics Letters, 1987, 50: 1553.
DOI URL |
[6] | MA F K, ZHANG Z, JIANG D P, et al. Cluster structure of rare earth doped fluorite halide crystals. Journal of Synthetic Crystals, 2023, 52(7): 1219. |
[7] |
ZHANG M, WANG G J, LIANG Y Y, et al. Continuous-wave laser properties of Er:Lu2O3 crystal grown by EFG method. Chinese Journal of Luminescence, 2023, 44(2): 240.
DOI URL |
[8] | WU X, ZHANG Z, ZHANG Z H, et al. Laser-heated pedestal growth method and characterization of Er:YAP single crystal fibers. Journal of Synthetic Crystals, 2023, 52(7): 1308. |
[9] |
DONG K P, SUN D L, ZHANG H L, et al. Spectroscopy and LD end-pumped high power 2.79 μm CW laser from an Er:LuYSGG mixed crystal. Journal of Luminescence, 2021, 236(4): 118107.
DOI URL |
[10] | YANG R, CHEN H R, TU L P, et al. Back energy transfer enhances Er3+upconversion luminescence. Chinese Journal of Luminescence, 2023, 44(9): 1552. |
[11] |
MA F K, SU F, ZHOU R F, et al. The defect aggregation of RE3+(RE = Y, La-Lu) in MF2 (M = Ca, Sr, Ba) fluorites. Materials Research Bulletin, 2020, 125(5): 110788.
DOI URL |
[12] |
QIAN X Y, WANG W D, SONG Q S, et al. Luminescence property and Judd-Ofelt analysis of 0.6%Pr, x%La:CaF2 crystals. Journal of Inorganic Materials, 2023, 38(3): 357.
DOI URL |
[13] |
ZHANG Z, MA F K, GUO X S, et al. Mid-infrared spectral properties and laser performance of Er3+ doped CaxSr1-xF2 single crystals. Optical Materials Express, 2018, 8(12): 3820.
DOI URL |
[14] |
WANG H J, KOU H M, WANG Y Z, et al. Irradiation damage of CaF2 with different yttrium concentrations under 193 nm laser. Journal of Inorganic Materials, 2023, 38(2): 219.
DOI URL |
[15] |
ZHAO X, LIU Z, LIN H, et al. Temperature sensing characteristics of Y7O6F9:Er, Yb/PAN composite fibers based on up-conversion luminescence. Chinese Journal of Luminescence, 2023, 44(2): 279.
DOI URL |
[16] |
LIU J J, FENG X Y, FAN X W, et al. Efficient continuous-wave and passive Q-switched mode-locked Er3+:CaF2-SrF2 lasers in the mid-infrared region. Optics Letters, 2018, 43(10): 2418.
DOI URL |
[17] |
ZONG M Y, ZHANG Z, LIU J J, et al. LD pumped high-power mid-infrared solid state lasers based on 1.3at%Er3+:CaF2 crystal. Infrared and Laser Engineering, 2021, 50: 20210336.
DOI URL |
[18] |
ZHANG Z, WU Q H, WANG Y X, et al. Efficient 2.76 μm continuous-wave laser in extremely lightly Er-doped CaF2 single- crystal fiber. Laser Physics Letters, 2020, 17(8): 085801.
DOI URL |
[19] |
ŠVEJKAR R, ŠULC J, JELÍNKOVÁ H, et al. Diode-pumped Er:SrF2 laser tunable at 2.7 μm. Optical Materials Express, 2018, 8: 1025.
DOI URL |
[20] |
WU G D, YIN X Q, FAN M D, et al. Nd-doped structurally disordered YSr3(PO4)3 single crystal: growth and laser performances. Journal of Rare Earths, 2021, 39(12): 1540.
DOI URL |
[21] |
KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6: 15.
DOI URL |
[22] |
PERDEW J, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77: 3865.
DOI PMID |
[23] |
BLÖCHL P. Projector augmented-wave method. Physical Review B, 1994, 50: 17953.
DOI PMID |
[24] |
MA F K, ZHOU H Q, TANG Q Y, et al. Clusters modification for tunable photoluminescence in Nd3+:SrF2 crystal. Journal of Alloys and Compounds, 2022, 899: 162913.
DOI URL |
[25] |
KOLOBKOVA E, NIKONOROV N, BABKINA A, et al. Concentration dependence of upconversion luminescence of Er3+/Yb3+in the fluorophosphate glasses with small phosphates content. Optical Materials, 2020, 109(8): 110279.
DOI URL |
[26] |
TORQUATO A, OLIVEIRAS R A, SALES T O, et al. Influence of PbF2 content on optical thermometry of Er3+/Yb3+co-doped tungsten sodium phosphate glasses. Optical Materials, 2021, 112(12): 110723.
DOI URL |
[27] |
CORISH J, CATLOW C R A, JACOBS P W M, et al. Defect aggregation in anion-excess fluorites. Dopant monomers and dimers. Physical Review B, 1982, 25: 6425.
DOI URL |
[28] |
BENDALL P J, CATLOW C R A, CORISH J, et al. Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms. Journal of Solid State Chemistry, 1984, 51: 159.
DOI URL |
[29] |
KAMINSKII A, ZHMUROVA Z, LOMONOV V, et al. Two stimulated emission 4F3/2→4I11/2, 13/2 channels of Nd3+ ions in crystals of the CaF2-ScF3 system. Physica Status Solidi A, 1984, 84: K81.
DOI URL |
[30] | TALLANT D R, WRIGHT J C. Selective laser excitation of charge compensated sites in CaF2:Er3+. Journal of Chemical Physics, 1975, 63: 2074. |
[31] |
MA F K, ZHANG Z, JIANG D P, et al. Neodymium cluster evolution in fluorite laser crystal: a combined DFT and synchrotron X-ray absorption fine structure study. Crystal Growth & Design, 2022, 22: 4480.
DOI URL |
[32] |
MA F K, ZHANG P X, SU L B, et al. The host driven local structures modulation towards broadband photoluminescence in neodymium-doped fluorite crystal. Optical Materials, 2021, 119(9): 111322.
DOI URL |
[33] |
CAI J J, MA C G, YIN M. Factors influencing the structure of the complex-defects in AF2: RE3+ (A=Ca, Sr and Ba): a first-principles study. Journal of Luminescence, 2022, 250(6): 119058.
DOI URL |
[1] | 江宗玉, 黄红花, 清江, 王红宁, 姚超, 陈若愚. 铝离子掺杂MIL-101(Cr)的制备及其VOCs吸附性能研究[J]. 无机材料学报, 2025, 40(7): 747-753. |
[2] | 柴润宇, 张镇, 王孟龙, 夏长荣. 直接组装法制备氧化铈基金属支撑固体氧化物燃料电池[J]. 无机材料学报, 2025, 40(7): 765-771. |
[3] | 周阳阳, 张艳艳, 于子怡, 傅正钱, 许钫钫, 梁瑞虹, 周志勇. 通过Bi3+自掺杂增强CaBi4Ti4O15基陶瓷压电性能[J]. 无机材料学报, 2025, 40(6): 719-728. |
[4] | 陈莉波, 盛盈, 伍明, 宋季岭, 蹇建, 宋二红. Na和O元素共掺杂氮化碳高效光催化制氢[J]. 无机材料学报, 2025, 40(5): 552-562. |
[5] | 孙雨萱, 王政, 时雪, 史颖, 杜文通, 满振勇, 郑嘹赢, 李国荣. 缺陷偶极子热稳定性对Fe掺杂PZT陶瓷机电性能影响研究[J]. 无机材料学报, 2025, 40(5): 545-551. |
[6] | 安然, 林锶, 郭世刚, 张冲, 祝顺, 韩颖超. 铁掺杂纳米羟基磷灰石的制备及紫外吸收性能研究[J]. 无机材料学报, 2025, 40(5): 457-465. |
[7] | 渠吉发, 王旭, 张维轩, 张康喆, 熊永恒, 谭文轶. 掺杂改性NaYTiO4增强固体氧化物燃料电池阳极抗硫中毒性能[J]. 无机材料学报, 2025, 40(5): 489-496. |
[8] | 穆浩洁, 张源江, 喻彬, 付秀梅, 周世斌, 李晓东. ZrO2掺杂Y2O3-MgO纳米复相陶瓷的制备及性能研究[J]. 无机材料学报, 2025, 40(3): 281-289. |
[9] | 沈浩, 陈倩倩, 周渤翔, 唐晓东, 张媛媛. A位La/Sr共掺杂PbZrO3薄膜的制备及储能特性优化[J]. 无机材料学报, 2024, 39(9): 1022-1028. |
[10] | 程俊, 张家伟, 仇鹏飞, 陈立东, 史迅. P掺杂β-FeSi2材料的制备与热电输运性能[J]. 无机材料学报, 2024, 39(8): 895-902. |
[11] | 赵志翰, 郭鹏, 魏菁, 崔丽, 刘山泽, 张文龙, 陈仁德, 汪爱英. Ti-DLC薄膜压阻性能及载流子输运行为研究[J]. 无机材料学报, 2024, 39(8): 879-886. |
[12] | 李家琪, 李小松, 李煊赫, 朱晓兵, 朱爱民. 暖等离子体合成过渡金属掺杂氧化锰析氧电催化剂[J]. 无机材料学报, 2024, 39(7): 835-844. |
[13] | 李宪珂, 张超逸, 黄林, 孙鹏, 刘波, 徐军, 唐慧丽. 高质量铟掺杂氧化镓单晶浮区法生长研究[J]. 无机材料学报, 2024, 39(12): 1384-1390. |
[14] | 李秋实, 殷广明, 吕伟超, 王怀尧, 李婧琳, 杨红光, 关芳芳. Na+/g-C3N4材料的制备及光催化降解亚甲基蓝机理[J]. 无机材料学报, 2024, 39(10): 1143-1150. |
[15] | 戴乐, 刘洋, 高轩, 王书豪, 宋雅婷, 唐明猛, 刘丽莎, 汪尧进. 浓度梯度掺杂实现BiFeO3薄膜自极化[J]. 无机材料学报, 2024, 39(1): 99-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||