无机材料学报 ›› 2023, Vol. 38 ›› Issue (7): 778-784.DOI: 10.15541/jim20220667 CSTR: 32189.14.10.15541/jim20220667
收稿日期:2022-11-09
									
				
											修回日期:2022-12-27
									
				
									
				
											出版日期:2023-03-15
									
				
											网络出版日期:2023-03-17
									
			通讯作者:
					颜 涛, 副研究员. E-mail: yantao@fjirsm.ac.cn;作者简介:宋云霞(1992-), 女, 讲师. E-mail: yxsong@fjut.edu.cn
				
							基金资助:
        
               		SONG Yunxia1( ), HAN Yinglei2, YAN Tao2(
), HAN Yinglei2, YAN Tao2( ), LUO Min2(
), LUO Min2( )
)
			  
			
			
			
                
        
    
Received:2022-11-09
									
				
											Revised:2022-12-27
									
				
									
				
											Published:2023-03-15
									
				
											Online:2023-03-17
									
			Contact:
					YAN Tao, associate professor. E-mail: yantao@fjirsm.ac.cn;About author:SONG Yunxia (1992-), female, lecturer. E-mail: yxsong@fjut.edu.cn				
							Supported by:摘要:
作为实现全固态激光器频率转换功能的关键材料, 紫外非线性光学晶体发挥着不可替代的作用。设计兼具大的非线性光学系数、合适的双折射和宽带隙的紫外非线性光学晶体仍然是该领域亟待攻克的一个难题。由于具有宽的带隙, 硫酸盐已成为紫外非线性光学晶体领域的一个重要研究方向。SO4四面体基团具有接近非极性的Td对称性, 使其极化率各向异性和二阶极化率较小, 因而对晶体的非线性系数和双折射贡献很小。通常引入畸变程度高的阳离子多面体可以增加晶体的非线性效应和双折射。本工作将易于形成畸变多面体的Hg2+离子引入到硫酸盐体系中, 采用高温熔体法合成出新型非线性光学晶体材料Rb3Hg2(SO4)3Cl。该晶体属于单斜晶系, 空间群为P21, 晶胞参数为a=0.78653(2) nm, b=0.97901(2) nm, c=1.00104(3) nm, β=110.95(3), Z=2。其晶体结构由[SO4]四面体、[HgO5]和[HgO4Cl]多面体以角共享的方式连接形成空间网状结构, 而Rb+填充在孔洞中。Rb3Hg2(SO4)3Cl晶体的粉末倍频效应为1.5倍KDP, 且能够在可见光区实现相位匹配。紫外漫反射光谱测试表明, 紫外截止边为251 nm, 对应光学带隙为4.94 eV。利用偏光显微镜确定该晶体在546.1 nm处的双折射为0.04。此外, 第一性原理计算表明, 晶体的非线性系数主要来源于扭曲的[HgO5]、[HgO4Cl]和[SO4]多面体。上述结果表明, Rb3Hg2(SO4)3Cl是具有潜在应用前景的紫外非线性光学晶体材料。
中图分类号:
宋云霞, 韩颖磊, 颜涛, 罗敏. Rb3Hg2(SO4)3Cl新型紫外非线性光学晶体材料[J]. 无机材料学报, 2023, 38(7): 778-784.
SONG Yunxia, HAN Yinglei, YAN Tao, LUO Min. New Ultraviolet Nonlinear Optical Crystal Rb3Hg2(SO4)3Cl[J]. Journal of Inorganic Materials, 2023, 38(7): 778-784.
| Parameters | Rb3Hg2(SO4)3Cl | 
|---|---|
| Mass formula | 981.22 | 
| Crystal system | Monoclinic | 
| Space group | P21 | 
| a/nm | 0.78653(2) | 
| b/nm | 0.97901(2) | 
| c/nm | 1.00104(3) | 
| β/(°) | 111.095(3) | 
| V/nm3 | 0.71916(3) | 
| Z | 2 | 
| ρ(calcd)/(g·cm-3) | 4.531 | 
| Temperature/K | 293(2) | 
| λ/nm | 0.071073 | 
| F(000) | 864.0 | 
| μ/mm-1 | 39.701 | 
| Rint | 0.0304 | 
| R/wR (I>2σ(I)) | 0.0304/0.0703 | 
| R/wR (all data) | 0.0317/0.0712 | 
| GOF on F2 | 1.023 | 
| Largest diff. peak and hole (e/nm-3) | 1.22×10-3 and -1.76×10-3 | 
表1 Rb3Hg2(SO4)3Cl的晶胞参数和结构精修数据
Table 1 Crystal parameters and structure refinements for Rb3Hg2(SO4)3Cl
| Parameters | Rb3Hg2(SO4)3Cl | 
|---|---|
| Mass formula | 981.22 | 
| Crystal system | Monoclinic | 
| Space group | P21 | 
| a/nm | 0.78653(2) | 
| b/nm | 0.97901(2) | 
| c/nm | 1.00104(3) | 
| β/(°) | 111.095(3) | 
| V/nm3 | 0.71916(3) | 
| Z | 2 | 
| ρ(calcd)/(g·cm-3) | 4.531 | 
| Temperature/K | 293(2) | 
| λ/nm | 0.071073 | 
| F(000) | 864.0 | 
| μ/mm-1 | 39.701 | 
| Rint | 0.0304 | 
| R/wR (I>2σ(I)) | 0.0304/0.0703 | 
| R/wR (all data) | 0.0317/0.0712 | 
| GOF on F2 | 1.023 | 
| Largest diff. peak and hole (e/nm-3) | 1.22×10-3 and -1.76×10-3 | 
 
																													图4 Rb3Hg2(SO4)3Cl的晶体结构
Fig. 4 Crystal structure of Rb3Hg2(SO4)3Cl (a) Coordination environment of S and Hg ions; (b) Stacking of [SO4], [HgO5] and [HgO4Cl] polyhedra within a single cell; (c) Spatial network structure
 
																													图6 Rb3Hg2(SO4)3Cl的双折射测试结果
Fig. 6 Images of Rb3Hg2(SO4)3Cl birefringence (a) Crystals in polarized light; (b) Completed extinction of the crystal with forward compensation; (c) Completed extinction of the crystal with reverse compensation; (d) Thickness of measured crystal
| Species | Dipole moment/D | |||
|---|---|---|---|---|
| x | y | z | Total | |
| HgO5(typeⅠ) | 1.277 | 0.673 | -0.563 | 1.549 | 
| HgO5(typeⅡ) | -1.277 | 0.673 | 0.563 | 1.549 | 
| ∑Hg-O | 0 | 1.346 | 0 | 1.346 | 
| HgO4Cl(typeⅠ) | 0.270 | 3.231 | -1.591 | 3.611 | 
| HgO4Cl(typeⅡ) | -0.262 | 3.224 | 1.591 | 3.605 | 
| ∑Hg-O & ∑Hg-Cl | 0.008 | 6.455 | 0 | 6.455 | 
| SO4 (typeⅠ) | -0.928 | -0.103 | 2.047 | 2.250 | 
| SO4 (typeⅡ) | -1.177 | 1.609 | 0.607 | 2.084 | 
| SO4 (typeⅢ) | 1.767 | -0.702 | -1.505 | 2.425 | 
| SO4 (typeⅣ) | 0.928 | -0.102 | -2.039 | 2.243 | 
| SO4 (typeⅤ) | -1.765 | -0.702 | 1.512 | 2.428 | 
| SO4 (typeⅥ) | 1.176 | 1.611 | -0.608 | 2.085 | 
| ∑S-O | 0.001 | 1.611 | 0.014 | 1.611 | 
表2 Rb3Hg2(SO4)3Cl的偶极矩
Table 2 Calculated dipole moments of Rb3Hg2(SO4)3Cl
| Species | Dipole moment/D | |||
|---|---|---|---|---|
| x | y | z | Total | |
| HgO5(typeⅠ) | 1.277 | 0.673 | -0.563 | 1.549 | 
| HgO5(typeⅡ) | -1.277 | 0.673 | 0.563 | 1.549 | 
| ∑Hg-O | 0 | 1.346 | 0 | 1.346 | 
| HgO4Cl(typeⅠ) | 0.270 | 3.231 | -1.591 | 3.611 | 
| HgO4Cl(typeⅡ) | -0.262 | 3.224 | 1.591 | 3.605 | 
| ∑Hg-O & ∑Hg-Cl | 0.008 | 6.455 | 0 | 6.455 | 
| SO4 (typeⅠ) | -0.928 | -0.103 | 2.047 | 2.250 | 
| SO4 (typeⅡ) | -1.177 | 1.609 | 0.607 | 2.084 | 
| SO4 (typeⅢ) | 1.767 | -0.702 | -1.505 | 2.425 | 
| SO4 (typeⅣ) | 0.928 | -0.102 | -2.039 | 2.243 | 
| SO4 (typeⅤ) | -1.765 | -0.702 | 1.512 | 2.428 | 
| SO4 (typeⅥ) | 1.176 | 1.611 | -0.608 | 2.085 | 
| ∑S-O | 0.001 | 1.611 | 0.014 | 1.611 | 
 
																													图8 Rb3Hg2(SO4)3Cl的能带结构及态密度分布
Fig. 8 Energy band structures and electronic density distribution of Rb3Hg2(SO4)3Cl (a) Diagram of calculated electronic band structures; (b) Diagrams of calculated PDOS
| [1] | SAVAGE N. Ultraviolet lasers. Nature Photonics 2007, 1: 83. | 
| [2] | LUO M, LIANG F, SONG Y, et al. M2B10O14F6 (M = Ca, Sr): two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials. Journal of the American Chemical Society, 2018, 140: 3884. | 
| [3] | SONG Y, LUO M, YE N, Ultraviolet nonlinear optical crystals in π-conjugated system. Chinese Journal of Structural Chemistry, 2020, 39: 105. | 
| [4] | XIA F, WANG F, HU H, et al.  Application of second harmonic generation in characterization of 2D materials. Journal of Inorganic Materials, 2021,  36(10):1022. DOI | 
| [5] | SONG Y, LIANG F, TIAN H, et al.  Molecular engineering design of the first Sr2Be2B2O7-type fluoride carbonates AMgLi2(CO3)2F (A=K, Rb) as deep-ultraviolet birefringent crystal. Acta Chimica Sinica, 2022,  80(2):105. DOI URL | 
| [6] | LIU Y, LIN Z, LI Y, et al. Nonpolar Na10Cd(NO3)4(SO3S)4 exhibits a large second-harmonic generation. CCS Chemistry, 2021, 4: 526. | 
| [7] | TIAN H, LIN C, ZHAO X, et al. Design of a new ultraviolet nonlinear optical material KNO3SO3NH3 exhibiting an unexpected strong second harmonic generation response. Materials Today Physics, 2022, 28: 100849. | 
| [8] | MUTALIPU M, ZHANG M, WU H, et al. Ba3Mg3(BO3)3F3 polymorphs with reversible phase transition and high performances as ultraviolet nonlinear optical materials. Nature Communications, 2018, 9: 3089. | 
| [9] | ZHAO S, GONG P, BAI L, et al. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications. Nature Communications, 2014, 5: 4019. | 
| [10] | ZOU G, LIN C, JO H, et al. Pb2BO3Cl: a tailor-made polar lead borate chloride with very strong second harmonic generation. Angewandte Chemie International Edition, 2016, 55: 12078. | 
| [11] | YU H, KOOCHER N Z, RONDINELLI J, et al. Pb2BO3I: a borate iodide with the largest second-harmonic generation (SHG) response in the KBe2BO3F2 (KBBF) family of nonlinear optical (NLO) materials. Angewandte Chemie International Edition, 2018, 57: 6100. | 
| [12] | LUO M, SONG Y, LIANG F, et al. Pb2BO3Br: a novel nonlinear optical lead borate bromine with a KBBF-type structure exhibiting strong nonlinear optical response. Inorganic Chemistry Frontiers, 2018, 5: 916. | 
| [13] | Zou G H, Ye N, Huang L, et al.  Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. Journal of the American Chemical Society, 2011,  133(49):20001. DOI PMID | 
| [14] | TRAN T, HE J, RONDINELLI J M, et al. RbMgCO3F: a new beryllium-free deep-ultraviolet nonlinear optical material. Journal of the American Chemical Society, 2015, 137: 10504. | 
| [15] | DONG X, HUANG L, LIU Q, et al.  Perfect balance harmony in Ba2NO3(OH)3: a beryllium-free nitrate as a UV nonlinear optical material. Chemical Communications, 2018,  54(45):5792. DOI URL | 
| [16] | SHAN P, SUN T, CHEN H, et al. Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO3)4, a possible deep-ultraviolet nonlinear optical crystal. Scientific Reports. 2016, 6: 25201. | 
| [17] | YU P, WU L, ZHOU L, et al.  Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X = Cl, Br). Journal of the American Chemical Society, 2014,  136(1):480. DOI PMID | 
| [18] | YU H, YOUNG J, WU H, et al.  M4Mg4(P2O7)3 (M = K, Rb): Structural engineering of pyrophosphates for nonlinear optical applications. Chemistry of Materials, 2017, 29: 1845. DOI URL | 
| [19] | CHEN J, XIONG L, CHEN L, et al. Ba2NaClP2O7: unprecedented phase matchability induced by symmetry breaking and its unique fresnoite-type structure. Journal of the American Chemical Society, 2018, 140: 14082. | 
| [20] | LU X, CHEN Z, SHI X, et al.  Two pyrophosphates with large birefringences and second-harmonic responses as ultraviolet nonlinear optical materials. Angewandte Chemie International Edition, 2020,  59(40):17648. DOI URL | 
| [21] | DONG X, HUANG L, HU C, et al. CsSbF2SO4: an excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angewandte Chemie International Edition, 2019, 58: 6528. | 
| [22] | HE F, DENG Y, ZHAO X, et al. RbSbSO4Cl2: an excellent sulfate nonlinear optical material generated due to the synergistic effect of three asymmetric chromophores. Journal of Materials Chemistry C, 2019, 7: 5748. | 
| [23] | HE F, WANG Q, HU C, et al. Centrosymmetric (NH4)2SbCl(SO4)2 and non-centrosymmetric (NH4)SbCl2(SO4): synergistic effect of hydrogen-bonding interactions and lone-pair cations on the framework structures and macroscopic centricities. Crystal Growth & Design, 2018, 18: 6239. | 
| [24] | SANKAR R, RAGHAVAN C M, BALAJI M, et al.  Synthesis and growth of triaquaglycinesulfatozinc(II), [Zn(SO4)(C2H5NO2)(H2O)3], a new semiorganic nonlinear optical crystal. Crystal Growth & Design, 2007,  7(2):348. DOI URL | 
| [25] | SONG Y, HAO X, LIN C, et al.  Two tellurium(IV)-based sulfates exhibiting strong second harmonic generation and moderate birefringence as promising ultraviolet nonlinear optical materials. Inorganic Chemistry, 2021,  60(15):11412. DOI URL | 
| [26] | LI Y, YIN C, YANG X, et al. A nonlinear optical switchable sulfate of ultrawide bandgap. CCS Chemistry. 2020, 3: 2298. | 
| [27] | LI Y, LUO J, JI X, et al. A short-wave UV nonlinear optical sulfate of high thermal stability. Chinese Journal of Structural Chemistry, 2020, 39(3):485. | 
| [28] | SUN Y, LIN C, TIAN H, et al.  A2BeS2O8 (A = NH4, K, Rb, Cs) deep ultraviolet nonlinear optical crystals. Chemistry of Materials, 2022,  34(8):3781. DOI URL | 
| [29] | HAN Y, ZHAO X, XU F, et al. HgSO4: an excellent mid-infrared sulfate nonlinear optical crystal with wide band gap and strong second harmonic generation response. Journal of Alloys and Compounds, 2022, 902: 163727. | 
| [30] | BENGT B. The crystal structures of Tl3(Hg(SO4)2)(HgSO4Cl) and Rb3(Hg(SO4)2)(HgSO4Cl). Acta Chemica Scandinavica, Series A: Physical and Inorganic Chemistry, 1976, 30: 241. | 
| [31] | KURTZ S, PERRY T. A powder technique for evaluation of nonlinear optical materials. Journal of Applied Physics, 1968,  39(8):3798. DOI URL | 
| [32] | KOHN W. Nobel Lecture: electronic structure of matter-wave functions and density functionals. Reviews of Modern Physics, 1999, 71(5):1253. | 
| [33] | MILMAN V, WINKLER B, WHITE J A, et al.  Electronic structure, properties and phase stability of inorganic crystals: a pseudopotential plane-wave study. International Journal of Quantum Chemistry, 2000,  77(5):895. DOI URL | 
| [34] | YUAN G, MA X, HE H, et al.  Plane strain on band structures and photoelectric properties of 2D monolayer MoSi2N4. Journal of Inorganic Materials, 2022,  37(5):527. DOI URL | 
| [35] | SEGALL M D, LINDAN P J D, PROBERT M J, et al.  First- principles simulation: Ideas, illustrations and the CASTEP code. Journal of Physics-Condensed Matter, 2002,  14(11):2717. DOI URL | 
| [36] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1997, 78(7):1396. | 
| [37] | WEN Z, HUANG B, LU T, et al.  Pressure on the structure and thermal properties of PbTiO3: first-principle study. Journal of Inorganic Materials, 2022,  37(7):787. DOI URL | 
| [38] | ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: the PBE0 mode. Journal of Chemical Physics, 1999,  110(13):6158. DOI URL | 
| [1] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. | 
| [2] | 黄子鹏, 贾文晓, 李玲霞. (Ti0.5W0.5)5+掺杂MgNb2O6陶瓷的晶体结构与太赫兹介电性能[J]. 无机材料学报, 2025, 40(6): 647-655. | 
| [3] | 安然, 林锶, 郭世刚, 张冲, 祝顺, 韩颖超. 铁掺杂纳米羟基磷灰石的制备及紫外吸收性能研究[J]. 无机材料学报, 2025, 40(5): 457-465. | 
| [4] | 赵凯旋, 刘文鹏, 丁守军, 窦仁勤, 罗建乔, 高进云, 孙贵花, 任浩, 张庆礼. 熔融法制备Nd:YLF原料及其晶体生长和性能研究[J]. 无机材料学报, 2025, 40(5): 529-535. | 
| [5] | 黄建锋, 梁瑞虹, 周志勇. W/Cr共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2024, 39(8): 887-894. | 
| [6] | 胡盈, 李自清, 方晓生. 溶液法制备AgBi2I7薄膜及其光电探测性能研究[J]. 无机材料学报, 2023, 38(9): 1055-1061. | 
| [7] | 邹凯, 张文斌, 关胜, 孙海轶, 彭凯伦, 邹家杰, 李学红, 王成, 冷雨欣, 梁瑞虹, 周志勇. 压电式高温液滴喷射元件研制[J]. 无机材料学报, 2023, 38(8): 987-988. | 
| [8] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. | 
| [9] | 赵伟, 徐阳, 万颖杰, 蔡天逊, 穆金潇, 黄富强. 金属氰胺化合物的结构、合成及电化学储能应用[J]. 无机材料学报, 2022, 37(2): 140-151. | 
| [10] | 朱治昱, 焦艳, 邵冲云, 何冬兵, 胡丽丽. γ辐照及热退火对光热折变玻璃光学性能的影响[J]. 无机材料学报, 2021, 36(5): 521-526. | 
| [11] | 彭帆, 曾毅. 利用菊池衍射花样鉴定晶体结构的方法研究[J]. 无机材料学报, 2021, 36(11): 1193-1198. | 
| [12] | 李翠霞, 孙会珍, 金海泽, 史晓, 李文生, 孔文慧. 3D多级孔rGO/TiO2复合材料的构筑及其光催化性能研究[J]. 无机材料学报, 2021, 36(10): 1039-1046. | 
| [13] | 李淑芳,赵爽,周潇,李满荣. Zn3-xMnxTeO6的晶体结构与吸收光谱和磁性研究[J]. 无机材料学报, 2020, 35(8): 895-901. | 
| [14] | 李淑芳, 赵爽, 李满荣. 助熔剂法合成钨氧氯化合物Li23CuW10O40Cl5[J]. 无机材料学报, 2020, 35(7): 834-838. | 
| [15] | 周雄, 方立志, 黄双武, 夏海平, 胡建旭, 章践立, 陈宝玖. Ce 3+/Yb 3+共掺LiLuF4单晶的紫外和近红外发光研究[J]. 无机材料学报, 2020, 35(5): 556-560. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||