无机材料学报 ›› 2020, Vol. 35 ›› Issue (7): 834-838.DOI: 10.15541/jim20190598 CSTR: 32189.14.10.15541/jim20190598
所属专题: 结构陶瓷论文精选(2020)
收稿日期:
2019-11-25
修回日期:
2020-01-16
出版日期:
2020-07-20
网络出版日期:
2020-03-06
作者简介:
李淑芳(1989-), 女, 博士. E-mail: lishufang@mail.sysu.edu.cn
LI Shufang,ZHAO Shuang,LI Manrong()
Received:
2019-11-25
Revised:
2020-01-16
Published:
2020-07-20
Online:
2020-03-06
Supported by:
摘要:
由于不同阴离子之间的电负性、离子半径、极化率和氧化态之间的差异, 混合阴离子化合物可以产生不同于单一类型阴离子的新特性。混合阴离子金属材料在电子、湿度探测器、气体传感器、太阳能电池电极等领域有着广泛的应用前景。助熔剂方法是一种广泛应用于混合离子晶体生长的方法, 它以适当的金属盐作为助熔剂, 在较温和的条件下进行复分解反应。助熔剂法在混合阴离子化合物的合成中具有重要意义。钨氧氯化合物Li23CuW10O40Cl5单晶以高质量的Li4WO5为前驱体, 以CuCl2为助熔剂通过两步法合成。通过X射线单晶衍射确定其晶体结构。结果表明, Li23CuW10O40Cl5结晶属于P63/mcm空间群, 晶胞参数分别为a=1.02846(3) nm, c=1.98768(9) nm, V=1.82076(11) nm3, Z=2。单胞中分别包含五个晶体学独立的Li原子, 两个W原子, 一个Cu原子, 两个Cl原子以及五个O原子。结构中, W(1)原子和一个Cl原子及五个O原子相连接, 形成畸变八面体, 而W(2)原子与四个O原子相连接形成四面体, Cu原子与六个O原子相连形成八面体。因此, Li23CuW10O40Cl5的晶体结构主要由[CuO6]和[W(1)O5Cl]八面体以及[W(2)O4]四面体构成。助熔剂法合成钨氧氯化合物Li23CuW10O40Cl5对今后探索新型的混合阴离子化合物具有重要意义。
中图分类号:
李淑芳, 赵爽, 李满荣. 助熔剂法合成钨氧氯化合物Li23CuW10O40Cl5[J]. 无机材料学报, 2020, 35(7): 834-838.
LI Shufang, ZHAO Shuang, LI Manrong. Flux Growth of Tungsten Oxychloride Li23CuW10O40Cl5[J]. Journal of Inorganic Materials, 2020, 35(7): 834-838.
Chemical formula | Li23CuW10O40Cl5 | Chemical formula | Li23CuW10O40Cl5 |
---|---|---|---|
Formula weight | 2878.91 | μ/mm-1 | 32.505 |
Crystal size/mm3 | 0.162×0.115×0.090 | θrange/(°) | 3.07-25.49 |
Crystal system | Hexagonal | GOF on F2 | 1.171 |
Space group | P63/mcm | R1a [I >2s (I)] | 0.0229 |
a/nm | 1.02846(3) | wR2b [I >2s (I)] | 0.0637 |
c/nm | 1.98768(9) | R1a (all data) | 0.0232 |
V/nm3 | 1.82076(11) | wR2b(all data) | 0.0640 |
Z | 2 | Extinction coefficient | 0.00171(14) |
Dcalcd/(g·cm-3) | 5.251 |
Table 1 Summary of crystallographic data and structure refinement parameters for Li23CuW10O40Cl5
Chemical formula | Li23CuW10O40Cl5 | Chemical formula | Li23CuW10O40Cl5 |
---|---|---|---|
Formula weight | 2878.91 | μ/mm-1 | 32.505 |
Crystal size/mm3 | 0.162×0.115×0.090 | θrange/(°) | 3.07-25.49 |
Crystal system | Hexagonal | GOF on F2 | 1.171 |
Space group | P63/mcm | R1a [I >2s (I)] | 0.0229 |
a/nm | 1.02846(3) | wR2b [I >2s (I)] | 0.0637 |
c/nm | 1.98768(9) | R1a (all data) | 0.0232 |
V/nm3 | 1.82076(11) | wR2b(all data) | 0.0640 |
Z | 2 | Extinction coefficient | 0.00171(14) |
Dcalcd/(g·cm-3) | 5.251 |
Atom | Site | x | y | z | Ueq./nm2 |
---|---|---|---|---|---|
W(1) | 12k | 0.1904(1) | 0 | 0.6257(1) | 0.6(1) |
W(2) | 8h | 2/3 | 1/3 | 0.5947(1) | 0.6(1) |
Cu(1) | 2b | 0 | 0 | 1/2 | 2.0(1) |
Cl(1) | 6g | 0.4831(4) | 0.4831(4) | 3/4 | 1.6(1) |
Cl(2) | 4e | 0 | 0 | 0.6693(6) | 7.9(3) |
O(1) | 12k | 0 | 0.8520(8) | 0.5647(4) | 1.3(2) |
O(2) | 12k | 0.3077(8) | 0 | 0.5594(4) | 1.1(2) |
O(3) | 24l | 0.3150(6) | 0.1562(6) | 0.6766(3) | 1.1(1) |
O(4) | 24l | 0.5092(7) | 0.3447(6) | 0.5644(3) | 1.2(1) |
O(5) | 8h | 2/3 | 1/3 | 0.6842(5) | 1.2(2) |
Li(1) | 12j | 0.2060(40) | 0.2060(40) | 3/4 | 1.4(2) |
Li(2) | 12k | 1/2 | 1/2 | 1/2 | 2.2(6) |
Li(3) | 12i | 0.3510(20) | z0.1755(12) | 1/2 | 2.3(5) |
Li(4) | 6f | 0.3520(30) | 0.3520(30) | 0.6319(1) | 4.2(7) |
Li(5) | 6g | 0.4800(30) | 0.2210(30) | 3/4 | 2.8(5) |
Table 2 Atomic coordinates and equivalent isotropic displacement parameters of Li23CuW10O40Cl5
Atom | Site | x | y | z | Ueq./nm2 |
---|---|---|---|---|---|
W(1) | 12k | 0.1904(1) | 0 | 0.6257(1) | 0.6(1) |
W(2) | 8h | 2/3 | 1/3 | 0.5947(1) | 0.6(1) |
Cu(1) | 2b | 0 | 0 | 1/2 | 2.0(1) |
Cl(1) | 6g | 0.4831(4) | 0.4831(4) | 3/4 | 1.6(1) |
Cl(2) | 4e | 0 | 0 | 0.6693(6) | 7.9(3) |
O(1) | 12k | 0 | 0.8520(8) | 0.5647(4) | 1.3(2) |
O(2) | 12k | 0.3077(8) | 0 | 0.5594(4) | 1.1(2) |
O(3) | 24l | 0.3150(6) | 0.1562(6) | 0.6766(3) | 1.1(1) |
O(4) | 24l | 0.5092(7) | 0.3447(6) | 0.5644(3) | 1.2(1) |
O(5) | 8h | 2/3 | 1/3 | 0.6842(5) | 1.2(2) |
Li(1) | 12j | 0.2060(40) | 0.2060(40) | 3/4 | 1.4(2) |
Li(2) | 12k | 1/2 | 1/2 | 1/2 | 2.2(6) |
Li(3) | 12i | 0.3510(20) | z0.1755(12) | 1/2 | 2.3(5) |
Li(4) | 6f | 0.3520(30) | 0.3520(30) | 0.6319(1) | 4.2(7) |
Li(5) | 6g | 0.4800(30) | 0.2210(30) | 3/4 | 2.8(5) |
Bond | Bond length/nm | Bond | Bond length/nm | Bond | Bond length/nm |
---|---|---|---|---|---|
W(1)-O(3) | 0.1786(6) | Li(1)-O(3) | 0.2075(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-O(3) | 0.1786(6) | Li(1)-O(3) | 0.2075(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-O(2) | 0.1787(7) | Li(1)-O(5) | 0.213(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-Cl(2) | 0.2141(5) | Li(1)-O(5) | 0.213(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-O(1) | 0.2154(5) | Li(1)-Cl(1) | 0.248(3) | Li(4)-O(2) | 0.2303(8) |
W(1)-O(1) | 0.2154(5) | Li(1)-Cl(1) | 0.268(3) | Li(4)-O(2) | 0.2303(8) |
W(2)-O(5) | 0.1778(9) | Li(2)-O(3) | 0.2056(2) | (Li(4)-O) | 0.2158(3) |
W(2)-O(4) | 0.1785(6) | Li(2)-O(3) | 0.2056(2) | BVS | 0.096 |
W(2)-O(4) | 0.1785(6) | Li(2)-O(1) | 0.2490(3) | Li(5)-O(3) | 0.2054(8) |
W(2)-O(4) | 0.1785(6) | Li(2)-Cl(1) | 0.2710(3) | Li(5)-O(3) | 0.2054(8) |
(W(2)-O) | 0.1784(2) | Li(2)-O(4) | 0.213(2) | Li(5)-O(3) | 0.2054(8) |
BVS | 0.574 | Li(2)-O(4) | 0.213(2) | Li(5)-O(3) | 0.2054(8) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(2) | 0.2012(6) | Li(5)-Cl(2) | 0.266(3) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(2) | 0.2012(6) | Li(5)-Cl(2) | 0.266(3) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(1) | 0.2346(2) | Li(5)-Cl(1) | 0.285(4) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(1) | 0.2346(2) | ||
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(4) | 0.2117(2) | ||
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(4) | 0.2117(2) | ||
(Cu(1)-O) | 0.1992(8) | (Li(3)-O) | 0.2158(3) | ||
BVS | 0.250 | BVS | 0.099 |
Table 3 Selected bond lengths and atomic BVS for Li23CuW10O40Cl5
Bond | Bond length/nm | Bond | Bond length/nm | Bond | Bond length/nm |
---|---|---|---|---|---|
W(1)-O(3) | 0.1786(6) | Li(1)-O(3) | 0.2075(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-O(3) | 0.1786(6) | Li(1)-O(3) | 0.2075(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-O(2) | 0.1787(7) | Li(1)-O(5) | 0.213(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-Cl(2) | 0.2141(5) | Li(1)-O(5) | 0.213(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-O(1) | 0.2154(5) | Li(1)-Cl(1) | 0.248(3) | Li(4)-O(2) | 0.2303(8) |
W(1)-O(1) | 0.2154(5) | Li(1)-Cl(1) | 0.268(3) | Li(4)-O(2) | 0.2303(8) |
W(2)-O(5) | 0.1778(9) | Li(2)-O(3) | 0.2056(2) | (Li(4)-O) | 0.2158(3) |
W(2)-O(4) | 0.1785(6) | Li(2)-O(3) | 0.2056(2) | BVS | 0.096 |
W(2)-O(4) | 0.1785(6) | Li(2)-O(1) | 0.2490(3) | Li(5)-O(3) | 0.2054(8) |
W(2)-O(4) | 0.1785(6) | Li(2)-Cl(1) | 0.2710(3) | Li(5)-O(3) | 0.2054(8) |
(W(2)-O) | 0.1784(2) | Li(2)-O(4) | 0.213(2) | Li(5)-O(3) | 0.2054(8) |
BVS | 0.574 | Li(2)-O(4) | 0.213(2) | Li(5)-O(3) | 0.2054(8) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(2) | 0.2012(6) | Li(5)-Cl(2) | 0.266(3) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(2) | 0.2012(6) | Li(5)-Cl(2) | 0.266(3) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(1) | 0.2346(2) | Li(5)-Cl(1) | 0.285(4) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(1) | 0.2346(2) | ||
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(4) | 0.2117(2) | ||
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(4) | 0.2117(2) | ||
(Cu(1)-O) | 0.1992(8) | (Li(3)-O) | 0.2158(3) | ||
BVS | 0.250 | BVS | 0.099 |
[1] |
RANMOHOTTI K G, JOSEPHA E, CHOI J, et al. Topochemical manipulation of perovskites: low-temperature reaction strategies for directing structure and properties. Advanced Materials, 2011,23(4):442-460.
DOI URL |
[2] | ATTFIELD J P. Principles and applications of anion order in solid oxynitrides. Crystal Growth & Design, 2013,13(10):4623-4629. |
[3] |
CLARKE S J, ADAMSON P, HERKELRATH S J C, et al. Structures, physical properties, and chemistry of layered oxychalcogenides and oxypnictides. Inorganic Chemistry, 2008,47(19):8473-8486.
DOI URL PMID |
[4] | KAGEYAMA H, HAYASHI K, MAEDA K, et al. Expanding frontiers in materials chemistry and physics with multiple anions. Nature Communication, 2018,9:772. |
[5] | KOVACHEVA D, PETROV K. Preparation of crystalline ZnSnO3 from Li2SnO3 by low-temperature ion exchange. Solid State Ionics, 1998,109(3/4):327-332. |
[6] | KOROTIN M A, ANISIMOV V I. Electronic structure and antiferromagnetism in CaCuO2 and Sr2CuO2Cl2. Materials Letters, 1990,10(1/2):28-33. |
[7] |
WU H, YU H, YANG Z, et al. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. Journal of the American Chemical Society, 2013,135(11):4215-4218.
DOI URL PMID |
[8] |
WU H, PAN S, POEPPELMEIER, K R, et al. K3B6O10Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. Journal of the American Chemical Society, 2011,133(20):7786-7790.
URL PMID |
[9] | ZIMMERMANN I, JOHNSSON M A. Synthetic route toward layered materials: introducing stereochemically active lone-pairs into transition metal oxohalides. Crystal Growth & Design, 2014,14(10):5252-5259. |
[10] |
BERDONOSOV P S, JANSON O, OLENEV A V, et al. Crystal structures and variable magnetism of PbCu2(XO3)2Cl2 with X=Se, Te. Dalton Transactions, 2013,42(26):9547-9554.
DOI URL PMID |
[11] |
CONSTABLE E, RAYMOND S, PETIT S, et al. Magnetic and dielectric order in the kagomelike francisite Cu3Bi(SeO3)2O2Cl. Physical Review B, 2017,96(1):014413.
DOI URL |
[12] |
BECKER R, JOHNSSON M, KREMER R K, et al. Crystal structure and magnetic properties of FeTe2O5X (X = Cl, Br): a frustrated spin cluster compound with a new Te(IV) coordination polyhedron. Journal of the American Chemical Society, 2006,128(48):15469-15475.
DOI URL PMID |
[13] |
BERDONOSOV P S, OLENEV A V, DOLGIKH V A. Strontium-copper selenite-chlorides: synthesis and structural investigation. Journal of Solid State Chemistry, 2009,182(9):2368-2373.
DOI URL |
[14] |
GOERIGK F C, SCHLEID T. Composition and crystal structure of SmSb2O4Cl revisited-and the analogy of Sm1.5Sb1.5O4Br. Zeitschrift für Anorganische und Allgemeine Chemie., 2019,645(17):1079-1084.
DOI URL |
[15] |
GENG L, LI Q, LU H, et al. Sb-based antiferromagnetic oxychlorides: MSb2O3(OH)Cl (M=Mn, Fe, Co) with 2D spin-dimer structures. Dalton Transactions, 2016,45(45):18183-18189.
DOI URL PMID |
[16] |
WANG W H, REN X. Flux growth of high-quality CoFe2O4 single crystals and their characterization. Journal of Crystal Growth, 2006,289(2):605-608.
DOI URL |
[17] |
LI J, FANG L, LUO H. et al. Li4WO5: a temperature stable low-firing microwave dielectric ceramic with rock salt structure. Journal of the European Ceramic Society, 2016,36(1):243-246.
DOI URL |
[18] | SHELDRICK G M, SCHNEIDER T R. SHELXL: High-resolution Refinement. London: Academic Press, 1997,277:319-343. |
[19] |
SPEK A. Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 2003,36:7-13.
DOI URL |
[20] |
CHARKIN D O, LIGHTFOOT P. Synthesis of novel lead-molybdenum and lead-tungsten oxyhalides with the pinalite structure, Pb3MoO5Cl2 and Pb3WO5Br2. American Mineralogist, 2006,91(11/12):1918-1921.
DOI URL |
[21] | OKADA H M K, MARUMO F, IWAI S. The crystal structure of K2W3O10. Acta Crystal, 1976,B32:1522-1525. |
[22] |
TAMADON F, SEPPELT K. The elusive halides VCl5, MoCl6, and ReCl6. Angewandte Chemie International Edition, 2013,52(2):767-769.
DOI URL PMID |
[23] |
GROH M F, MUELLER U. AHMED E. et al. Substitution of conventional high-temperature syntheses of inorganic compounds by near-room-temperature syntheses in ionic liquids. Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences, 2013,68(10):1108-1122.
DOI URL |
[24] |
CHEN Y, ZHANG Y, FENG S. Hydrothermal synthesis and properties of pigments Chinese purple BaCuSi2O6 and dark blue BaCu2Si2O7. Dyes and Pigments, 2014,105:167-173.
DOI URL |
[25] |
LUTZ HEINZ D, SCHNEIDER M. The crystal structure of Li2MnCl4. Zeitschrift für Naturforschung B, 1990,45(11):1543-1547.
DOI URL |
[26] |
LUTZ HEINZ D, WUSSOW K, KUSKE P. Ionic conductivity, structural, IR and raman spectroscopic data of olivine, Sr2PbO4, and Na2CuF4 type lithium and sodium chlorides Li2ZnCl4 and Na2MCl4 (M=Mg, Ti, Cr, Mn, Co, Zn, Cd). Zeitschrift für Naturforschung B, 1987,42:1379-1386.
DOI URL |
[27] |
WEISSER M, TRAGL S, MEYER H J. Crystal structure of lithium hexachlorotungstate(V), LiWCl6. Zeitschrift für Kristallographie-New Crystal Structures, 2008,223(1):5-6.
DOI URL |
[28] |
LIANG Z, TANG K, SHAO Q, et al. Synthesis, crystal structure, and photocatalytic activity of a new two-layer Ruddlesden-Popper phase, Li2CaTa2O7. Journal of Solid State Chemistry, 2008,181(4):964-970.
DOI URL |
[1] | 黄建锋, 梁瑞虹, 周志勇. W/Cr共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2024, 39(8): 887-894. |
[2] | 宋云霞, 韩颖磊, 颜涛, 罗敏. Rb3Hg2(SO4)3Cl新型紫外非线性光学晶体材料[J]. 无机材料学报, 2023, 38(7): 778-784. |
[3] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[4] | 赵伟, 徐阳, 万颖杰, 蔡天逊, 穆金潇, 黄富强. 金属氰胺化合物的结构、合成及电化学储能应用[J]. 无机材料学报, 2022, 37(2): 140-151. |
[5] | 彭帆, 曾毅. 利用菊池衍射花样鉴定晶体结构的方法研究[J]. 无机材料学报, 2021, 36(11): 1193-1198. |
[6] | 李淑芳,赵爽,周潇,李满荣. Zn3-xMnxTeO6的晶体结构与吸收光谱和磁性研究[J]. 无机材料学报, 2020, 35(8): 895-901. |
[7] | 黄冲,赵伟,王东,卜克军,王思顺,黄富强. Pd插层NbSe2化合物的制备、晶体结构和电学性质研究[J]. 无机材料学报, 2020, 35(4): 505-510. |
[8] | 曾祥雄, 杨进超, 左联, 杨奔奔, 秦峻, 彭志航. Li/Ce/La共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2019, 34(4): 379-386. |
[9] | 黄龙, 丁士华, 张晓云, 严欣堪, 李超, 朱惠. Li2O-B2O3-SiO2玻璃相对BaAl2Si2O8结构及微波介电性能的影响[J]. 无机材料学报, 2019, 34(10): 1091-1096. |
[10] | 程国峰, 阮音捷, 孙玥, 尹晗迪. 纯相BiFeO3的热稳定和热膨胀性质研究[J]. 无机材料学报, 2019, 34(10): 1128-1133. |
[11] | 程国峰, 阮音捷, 孙玥, 尹晗迪, 解其云. 元素配比对BiFeO3反应烧结相变影响的高温X射线衍射研究[J]. 无机材料学报, 2019, 34(10): 1035-1040. |
[12] | 周鑫, 马垒, 刘涛, 郭永斌, 王岛, 董培林. Si3N4/FePd/Si3N4薄膜的晶体结构和磁性能研究[J]. 无机材料学报, 2018, 33(8): 909-913. |
[13] | 孟凡斌, 马晓帆, 张 炜, 吴光恒, 张玉洁. Mn和Fe掺杂对尖晶石氧化物Co2MnO4结构和磁性的影响[J]. 无机材料学报, 2017, 32(6): 609-614. |
[14] | 王晴晴, 史 坚, 李焕英, 陈晓峰, 潘尚可, 卞建江, 任国浩. Cs2LiYCl6:Ce闪烁晶体的光学及闪烁性能[J]. 无机材料学报, 2017, 32(2): 175-179. |
[15] | 淡猛, 张骞, 钟云倩, 周莹. 不同晶相MnS制备及光解H2S制氢性能研究[J]. 无机材料学报, 2017, 32(12): 1308-1314. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||