无机材料学报 ›› 2020, Vol. 35 ›› Issue (8): 895-901.DOI: 10.15541/jim20190606 CSTR: 32189.14.10.15541/jim20190606
所属专题: 功能材料论文精选(一):光学材料(2020)
收稿日期:
2019-11-29
修回日期:
2020-01-16
出版日期:
2020-08-20
网络出版日期:
2020-03-06
作者简介:
李淑芳(1989–), 女, 博士. E-mail: 基金资助:
LI Shufang(),ZHAO Shuang,ZHOU Xiao,LI Manrong(
)
Received:
2019-11-29
Revised:
2020-01-16
Published:
2020-08-20
Online:
2020-03-06
Supported by:
摘要:
本工作主要研究Mn 2+离子掺杂的类刚玉系氧化物Zn3TeO6(0<x≤2.0)的晶体结构与光学性质和磁性的变化。Zn3-xMnxTeO6粉末样品通过固相反应合成。Mn掺杂量的相图表明, x<1.0时保持单斜(C2/c)结构, 1.0≤x≤1.6为单斜(C2/c)和三方六面体混合相(R-3), x≥1.8时完全转变为R-3相, 且x=2.0时形成ZnMn2TeO6, Te-O和Mn/Zn-O键长增大, 八面体发生更大畸变。X射线粉末衍射结构精修也表明R-3相中Zn/MnO6为畸变八面体。随着Mn 2+掺杂含量的增加, Zn3-xMnxTeO6系列化合物不仅结构发生变化, 其颜色也由浅变深。紫外吸收光谱中随着掺杂浓度的增加, 400~550 nm处的吸收增强, 样品的光学带隙也由3.25 eV (x=0.1)逐渐减小到2.08 eV (x=2.0), 分析表明, 可见区吸收的增强是源于MnO6八面体中Zn/MnO6八面体中Mn 2+离子的d-d跃迁, 导致样品由浅黄色逐渐变为暗黄色。 磁性测试表明, 固溶体的反铁磁转变温度随着Mn 2+掺杂量的提高而逐渐增加, 且掺入的Mn 2+离子以高自旋态 存在。
中图分类号:
李淑芳,赵爽,周潇,李满荣. Zn3-xMnxTeO6的晶体结构与吸收光谱和磁性研究[J]. 无机材料学报, 2020, 35(8): 895-901.
LI Shufang,ZHAO Shuang,ZHOU Xiao,LI Manrong. Crystal Structures, Optical, and Magnetic Properties of Zn3-xMnxTeO6[J]. Journal of Inorganic Materials, 2020, 35(8): 895-901.
图2 固溶体Zn3-xMnxTeO6 (0<x≤2.0)晶胞参数a, b, c [nm] (a)以及V [nm3] (b)的变化
Fig. 2 Lattice parameters a, b and c [nm] (a), and V [nm3] (b) obtained from Zn3-xMnxTeO6 (0<x≤2.0) solid solutions by XRD measurements at room temperature
图3 ZnMn2TeO6的X射线粉末衍射结构精修结果(a)和基于粉末精修结果得到的ZnMn2TeO6的晶体结构(b)
Fig. 3 Rietveld refined of the PXRD data (a) and crystal structure (b) of ZnMn2TeO6 Zn/Mn: blue spheres; Te: yellow spheres; O: red spheres; TeO6 octahedra: yellow; MnO6 octahedra: blue
Atom | Site | x | y | z | B/nm2 | Occ. |
---|---|---|---|---|---|---|
Mn/Zn | 18f | 0.0388(1) | 0.2240(1) | 0.2864(1) | 0.00510(1) | 0.667/0.333 |
Te1 | 3b | 0 | 0 | 0.5 | 0.00710(1) | 1.0 |
Te2 | 3a | 0 | 0 | 0 | 0.00320(1) | 1.0 |
O1 | 18f | 0.1773(4) | 0.1972(4) | 0.3833(1) | 0.00510(1) | 1.0 |
O2 | 18f | 0.2061(3) | 0.0348(5) | 0.1071(2) | 0.00550(1) | 1.0 |
表1 精修得到的ZnMn2TeO6的晶体结构参数
Table 1 Crystallographic parameters for ZnMn2TeO6 obtained from the Rietveld refinement of the PXRD data
Atom | Site | x | y | z | B/nm2 | Occ. |
---|---|---|---|---|---|---|
Mn/Zn | 18f | 0.0388(1) | 0.2240(1) | 0.2864(1) | 0.00510(1) | 0.667/0.333 |
Te1 | 3b | 0 | 0 | 0.5 | 0.00710(1) | 1.0 |
Te2 | 3a | 0 | 0 | 0 | 0.00320(1) | 1.0 |
O1 | 18f | 0.1773(4) | 0.1972(4) | 0.3833(1) | 0.00510(1) | 1.0 |
O2 | 18f | 0.2061(3) | 0.0348(5) | 0.1071(2) | 0.00550(1) | 1.0 |
图6 化合物Zn3-xMnxTeO6 (0<x≤2.0)在7.96×104 A/m磁场强度下的从5到300 K的磁化率曲线
Fig. 6 Temperature-dependent susceptibility of Zn3-xMnxTeO6 (0<x≤2.0) measured between 5-300 K under magnetic field of 7.96×104 A/m
[1] |
TOKURA Y, SEKI S, NAGAOSA N. Multiferroics of spin origin. Reports Progress in Physics, 2014,77:076501.
DOI URL |
[2] |
EERENSTEIN W, MATHUR N D, SCOTT J F. Multiferroic and magnetoelectric materials. Nature, 2006,442:759-765.
DOI URL PMID |
[3] |
RAO C N R, SUNDARESAN A, SAHA R. Multiferroic and magnetoelectric oxides: the emerging scenario. The Journal of Physical Chemistry Letters, 2012,3(16):2237-2246.
DOI URL PMID |
[4] |
SPALDIN N A, FIEBIG M. The renaissance of magnetoelectric multiferroics. Science, 2005,309(5733):391-392.
URL PMID |
[5] |
KIMURA T, GOTO T, SHINTANI H, et al. Magnetic control of ferroelectric polarization. Nature, 2003,426(6962):55-58.
DOI URL PMID |
[6] |
WANG J, NEATON J B, ZHENG H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003,299:1719-1722.
DOI URL PMID |
[7] |
KITAGAWA Y, HIRAOKA Y, HONDA T, et al. Low-field magnetoelectric effect at room temperature. Nature Materials, 2010,9(10):797-802.
DOI URL PMID |
[8] |
LI M R, ADEM U, MCMITCHELL S R C, et al. A polar corundum oxide displaying weak ferromagnetism at room temperature. Journal of the American Chemical Society, 2012,134(8):3737-3747.
DOI URL PMID |
[9] | FINGER L W, HAZEN R M. Crystal structure and compression of ruby to 46 kbar. Journal of Applied Physics (USA), 1978,49(12):5823-5826. |
[10] | CAI G H, GREEBLATT M, LI M R. Polar magnets in double corundum oxides. Chemistry of Materials, 2017,29(13):5447-5457. |
[11] | SCHULZ H, BAYER G. Structure determination of Mg3TeO6. Acta Crystallographica,Section B (Structural Crystallography and Crystal Chemistry), 1971,B27:815-21. |
[12] | WEIL M. Mn3TeO6. Acta Crystallographica Section E Structure Reports Online, 2006,62(12):i244-i245. |
[13] | BECKER R, BERGER H. Reinvestigation of Ni3TeO6. Acta Crystallographica Section E-Structure Reports Online, 2006,62:I222-I223. |
[14] | FALCK L, LINDQVIST O, MORET J. Tricopper(II) tellurate(VI). Acta Crystallographica Section B, 1978,34(3):896-897. |
[15] | HERAK M. Cubic magnetic anisotropy of the antiferromagnetically ordered Cu3TeO6. Solid State Communications, 2011,151(21):1588-1592. |
[16] | MATHIEU R, IVANOV S A, NORDBLAD P, et al. Enhancement of antiferromagnetic interaction and transition temperature in M3TeO6 systems (M=Mn, Co, Ni, Cu). The European Physical Journal B, 2013,86(8):361. |
[17] | CAIMI G, DEGIORGI L, BERGER H, et al. Optical evidence for a magnetically driven structural transition in the spin web Cu3TeO6. Europhysics Letters, 2006,75(3):496. |
[18] | BHIM A, GOPALAKRISHNAN J, NATARAJAN S. Exploring the corundum structure as a host for colored compounds-synthesis, structures, and optical studies of (MM’)3TeO6(M=Mg, Mn, Co, Ni, Zn; M’=Mg, Mn, Co, Ni, Cu). European Journal of Inorganic Chemistry, 2018(20/21):2277-2284. |
[19] | WEIL M. Zn3TeO6. Acta Crystallographica Section E Structure Reports Online, 2006,62(12):i246-i247. |
[20] | IVANOV S A, TELLGREN R, RITTER C, et al. Temperature- dependent multi-k magnetic structure in multiferroic Co3TeO6. Materials Research Bulletin, 2012,47(1):63-72. |
[21] | IVANOV S A, MATHIEU R, NORDBLAD P, et al. Spin and dipole ordering in Ni2InSbO6 and Ni2ScSbO6 with corundum-related structure. Chemistry of Materials, 2013,22(6):935-945. |
[22] | CHOI K Y, LEMMENS P, CHOI E S, et al. Lattice anomalies and magnetic excitations of the spin web compound Cu3TeO6. Journal of Physics: Condensed Matter, 2008,20(50):505214. |
[23] | SINGH H, GHOSH H, CHANDRASEKHAR RAO T V, et al. Short range ferromagnetic, magneto-electric, and magneto- dielectric effect in ceramic Co3TeO6. Journal of Applied Physics, 2016,119(4):044104. |
[24] | SINGH H, SINHA A K, GHOSH H, et al. Structural investigations on Co3-xMnxTeO6; (0<x≤2): high temperature ferromagnetism and enhanced low temperature anti-ferromagnetism. Journal of Applied Physics (USA), 2014, 116 (7): 074904-1-9. |
[25] | HARRIS A B. Symmetry analysis of multiferroic Co3TeO6. Physical Review B, 2012,85(10):100403. |
[26] | HER J L, CHOU C C, MATSUDA Y H, et al. Magnetic phase diagram of the antiferromagnetic cobalt tellurate Co3TeO6. Physical Review B, 2011,84(23):35123. |
[27] | TOLEDANO P, CAROLUS V, HUDL M, et al. First-order multi-k phase transitions and magnetoelectric effects in multiferroic Co3TeO6. Physical Review B, 2012,85(21):214439. |
[28] | WANG C W, LEE C H, LI C Y, et al. Complex magnetic couplings in Co3TeO6. Physical Review B, 2013,88(18):184427. |
[29] | HUDL M, MATHIEU R, IVANOV S A, et al. Complex magnetism and magnetic-field-driven electrical polarization of Co3TeO6. Physical Review B, 2011,84(18):180404. |
[30] | HARRIS A B. Symmetry analysis of multiferroic Co3TeO6. Physical Review B, 2012,85(10):100403. |
[31] | SINGH H, GHOSH H, RAO T V C, et al. Observation of high-spin mixed oxidation state of cobalt in ceramic Co3TeO6. Journal of Applied Physics, 2014, 116(21): 214106-1-7. |
[32] |
IVANOV S A, NORDBLAD P, MATHIEU R, et al. New type of incommensurate magnetic ordering in Mn3TeO6. Materials Research Bulletin, 2011,46(11):1870-1877.
DOI URL |
[33] |
IVANOV S A, MATHIEU R, NORDBLAD P, et al. Chemical pressure effects on structural, dielectric and magnetic properties of solid solutions Mn3-xCoxTeO6. Materials Research Bulletin, 2014,50:42-56.
DOI URL |
[34] |
COELHO A. Whole-profile structure solution from powder diffraction data using simulated annealing. Journal of Applied Crystallography, 2000,33(3):899-908.
DOI URL |
[35] |
TAUC J. Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 1968,3(1):37-46.
DOI URL |
[36] |
LIU C, YE M, HAN A, et al. Structural analysis and characterization of doped spinel Co2-xMxTiO4 (M=Mg 2+, Mn 2+, Ni 2+, Cu 2+ and Zn 2+) coated mica composite pigments . Ceramics International, 2015,41(4):5537-5546.
DOI URL |
[1] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[2] | 黄建锋, 梁瑞虹, 周志勇. W/Cr共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2024, 39(8): 887-894. |
[3] | 蔡和庆, 韩璐, 杨松松, 薛新玉, 张扣, 孙志成, 刘儒平, 胡堃, 危岩. 小粒径Fe3O4-DMSA-PEI磁性纳米颗粒的制备及其基因负载能力研究[J]. 无机材料学报, 2024, 39(5): 517-524. |
[4] | 宋云霞, 韩颖磊, 颜涛, 罗敏. Rb3Hg2(SO4)3Cl新型紫外非线性光学晶体材料[J]. 无机材料学报, 2023, 38(7): 778-784. |
[5] | 王磊, 李建军, 宁军, 胡天玉, 王洪阳, 张占群, 武琳馨. CoFe2O4@Zeolite催化剂活化过一硫酸盐对甲基橙的强化降解: 性能与机理[J]. 无机材料学报, 2023, 38(4): 469-476. |
[6] | 赵伟, 徐阳, 万颖杰, 蔡天逊, 穆金潇, 黄富强. 金属氰胺化合物的结构、合成及电化学储能应用[J]. 无机材料学报, 2022, 37(2): 140-151. |
[7] | 胡靖三, 顾建飞, 章维益. 晶场劈裂序参量导致稀土-硼十二化合物中磁性和比热反常的理论研究[J]. 无机材料学报, 2021, 36(8): 865-870. |
[8] | 张霄, 李友兵, 陈科, 丁浩明, 陈露, 李勉, 史蓉蓉, 柴之芳, 黄庆. M位与A位双固溶MAX相的磁学性能研究[J]. 无机材料学报, 2021, 36(12): 1247-1255. |
[9] | 彭帆, 曾毅. 利用菊池衍射花样鉴定晶体结构的方法研究[J]. 无机材料学报, 2021, 36(11): 1193-1198. |
[10] | 朱正旺,冯锐,柳扬,张扬,谢文翰,董丽杰. 类鱼骨结构CoFe2O4纳米纤维的制备与性能[J]. 无机材料学报, 2020, 35(9): 1011-1016. |
[11] | 李淑芳, 赵爽, 李满荣. 助熔剂法合成钨氧氯化合物Li23CuW10O40Cl5[J]. 无机材料学报, 2020, 35(7): 834-838. |
[12] | 黄冲,赵伟,王东,卜克军,王思顺,黄富强. Pd插层NbSe2化合物的制备、晶体结构和电学性质研究[J]. 无机材料学报, 2020, 35(4): 505-510. |
[13] | 赵占奎, 李涛, 鲁书含, 王明罡, 张京京, 程道文, 吴臣, 迟悦, 王虹力. SPS界面反应增强机制调控的软磁复合材料磁性能和电阻率[J]. 无机材料学报, 2020, 35(11): 1223-1226. |
[14] | 曾祥雄, 杨进超, 左联, 杨奔奔, 秦峻, 彭志航. Li/Ce/La共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2019, 34(4): 379-386. |
[15] | 黄龙, 丁士华, 张晓云, 严欣堪, 李超, 朱惠. Li2O-B2O3-SiO2玻璃相对BaAl2Si2O8结构及微波介电性能的影响[J]. 无机材料学报, 2019, 34(10): 1091-1096. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||