无机材料学报 ›› 2021, Vol. 36 ›› Issue (5): 521-526.DOI: 10.15541/jim20200389 CSTR: 32189.14.10.15541/jim20200389
朱治昱1,2(), 焦艳1,2, 邵冲云1, 何冬兵1(
), 胡丽丽1(
)
收稿日期:
2020-07-10
修回日期:
2020-10-15
出版日期:
2021-05-20
网络出版日期:
2021-04-19
通讯作者:
何冬兵, 副研究员. E-mail: hdb798123@163.com;胡丽丽, 研究员. E-mail: hulili@siom.ac.cnhulili@siom.ac.cn
作者简介:
朱治昱(1996-), 男, 硕士研究生. E-mail:zhuzhiyu2019@gmail.com
ZHU Zhiyu1,2(), JIAO Yan1,2, SHAO Chongyun1, HE Dongbing1(
), HU Lili1(
)
Received:
2020-07-10
Revised:
2020-10-15
Published:
2021-05-20
Online:
2021-04-19
Contact:
HE Dongbing, associate professor. E-mail: hdb798123@163.com;HU Lili, professor. E-mail: hulili@siom.ac.cn
About author:
ZHU Zhiyu(1996-), male, Master candidate. E-mail:zhuzhiyu2019@gmail.com
摘要:
对光热折变(Photo-thermal-refractive, PTR)玻璃在总剂量分别为0.35、1、10及100 kGy的γ射线下辐照, 并进行热退火处理, 采用吸收光谱、光致发光光谱及EPR电子顺磁共振谱研究了光热折变玻璃在γ射线辐照下的辐照机理。研究结果表明, γ辐照后的PTR玻璃在可见波段的吸收主要由银原子Ag0、银分子簇Ag2、银分子簇Ag3、银纳米颗粒Agm0及非桥氧空穴中心HC1及HC2引起; 在不同剂量γ射线辐照下, 玻璃基质中的变价离子(Ag+、Ce3+)价态先发生变化, 同时玻璃基质中的非桥氧键发生电离, 形成了非桥氧空穴型缺陷中心HC1、HC2。进一步增加辐照剂量, 产生了银的分子簇Ag2和Ag3; 同时玻璃基质中非桥氧空穴中心HC2的浓度增大, 导致在639 nm附近的吸收增强。分别在不同温度下对辐照后的PTR玻璃进行相同时间的热处理及在低于Tg(玻璃转变温度)的温度下进行不同时间的热处理, 观察到250 ℃退火后PTR玻璃中HC1及HC2缺陷中心发生漂白; 并在430 ℃退火后出现了银纳米颗粒的吸收峰, 该吸收峰随退火时间的延长发生了红移及展宽。
中图分类号:
朱治昱, 焦艳, 邵冲云, 何冬兵, 胡丽丽. γ辐照及热退火对光热折变玻璃光学性能的影响[J]. 无机材料学报, 2021, 36(5): 521-526.
ZHU Zhiyu, JIAO Yan, SHAO Chongyun, HE Dongbing, HU Lili. Effects of γ-Irradiation and Thermal Annealing on Photo-thermal-refractive Glass[J]. Journal of Inorganic Materials, 2021, 36(5): 521-526.
图2 未辐照及0.35、1、10和100 kGy γ射线辐照后PTR玻璃的透过谱图(a)和吸收谱图(b) (厚度2 mm)
Fig. 2 (a) Transmission spectra and (b) absorbance spectra of unirradiated PTR glass and PTR glass irradiated with 0.35, 1, 10, and 100 kGy γ-ray
图3 未辐照及0.35、1、10和100 kGy γ射线辐照后PTR玻璃的光致发光光谱(激发波长为340 nm)
Fig. 3 Emission spectra of PTR glass before and after being irradiated by 0.35, 1, 10, and 100 kGy γ-ray (Excitation wavelength: 340 nm)
图5 在不同温度下, 对100 kGy γ射线辐照后的PTR玻璃进行30 min热处理后的透过光谱(a)和实物照片(b)
Fig. 5 (a) Transmission spectra and (b) photos of PTR glass irradiated with 100 kGy γ-ray and thermal treatment at different temperatures for 30 min
图6 在430 ℃下对100 kGy γ射线辐照后的PTR玻璃进行不同时间热处理后的吸收谱(a), 30 min (b)和120 min (c)和热处理后的TEM照片
Fig. 6 Absorbance spectra of PTR glass after 100 kGy γ-irradiation and thermal treatment at 430 ℃ for different time (a), TEM images of PTR glass after 100 kGy γ-irradiation and thermal treatment at 430 ℃ for 30 min (b) and 180 min (c)
图7 经100 kGy γ射线辐照, 并于430 ℃进行30、360 min热处理前后PTR玻璃的光学吸收谱
Fig. 7 Absorption spectra of 100 kGy γ-ray irradiated PTR glass before and after thermal treatment at 430 ℃ for 30 min and 360 min
图8 经1、100kGy γ射线辐照及100 kGy γ射线辐照并于430 ℃退火120 min的PTR玻璃的EPR谱(a)以及1 kGy(b)和100 kGy(c) γ射线辐照后的TEM照片
Fig. 8 EPR spectra of PTR glass irradiated with 1, 100 kGy γ-ray, and 100 kGy γ-irradiation and thermal treatment at 430 ℃ for 120 min (a), TEM images of PTR glass after 1 kGy (b) and 100 kGy (c) γ-irradiation
[1] | NIKONOROV N, ASEEV V, DUBROVIN V, et al. Design and Fabrication of Optical Devices Based on New Polyfunctional Photo-thermo-refractive Glasses. 4th International Conference on Photonics. Optics and Laser Technology. IEEE, 2016: 20-27. |
[2] | LUMEAU J, ZANOTTO E D. A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass. International Materials Reviews, 2016,62(6):348-366. |
[3] |
LUMEAU J, GLEBOVA L, GLEBOV L B. Near-IR absorption in high-purity photothermorefractive glass and holographic optical elements: measurement and application for high-energy lasers. Applied Optics, 2011,50(30):5905-5911.
DOI URL PMID |
[4] | YANG Z N, WANG H Y, LU Q S, et al. An 80-W laser diode array with 0.1 nm linewidth for rubidium vapor laser pumping. Chinese Physics Letters, 2011, 28(10): 104202-1-3. |
[5] | XING H, DEJIANG C, SIBO W, et al. Single-frequency Nd: YVO4 laser based on reflective bragg grating combined with fabry-perot etalon. Acta Optica Sinica, 2019, 39(5): 05140021- 1-6. |
[6] | SERGE I, MAXIM S, DARYA K, et al. Blue shift of the plasmon resonance in fluoride photo-thermo-refractive glass. Optical Materials Express, 2018,8(9):2734-2742. |
[7] | SIDOROV A I, NIKONOROV N V, IGNATIEV A I, et al. The effect of UV irradiation and thermal treatments on structural properties of silver-containing photo-thermo-refractive glasses: studies by Raman spectroscopy. Optical Materials, 2019,98:109422. |
[8] |
FU X J, SONG L X, LI J C. Coloration of Ce-doped multicomponent silicate glasses by electron irradiation. Journal of Inorganic Materials, 2014,29(10):1018-1022.
DOI URL |
[9] |
DUBROVIN V D, IGNATIEV A I, NIKONOROV N V, et al. Luminescence of silver molecular clusters in photo-thermo- refractive glasses. Optical Materials, 2014,36(4):753-759.
DOI URL |
[10] | SALH R. Defect Related Luminescence in Silicon Dioxide Network: A Review. Rijeka: InTech, 2011: 135-172 |
[11] | ZATSEPIN A F, GUSEVA V B, VAZHENIN V A, et al. Paramagnetic defects in gamma-irradiated Na/K-silicate glasses. Physics of the Solid State, 2012,54(9):1776-1784. |
[12] | LAMAESTRE R E D, BEA H, BERNAS H, et al. Irradiation- induced Ag nanocluster nucleation in silicate glasses: analogy with photography. Physical review B, Condensed Matter and Materials Physics, 2007,76(20):205431. |
[13] | TSAI H S, CHAO D S, WU Y H, et al. Spectroscopic investigation of gamma radiation-induced coloration in silicate glass for nuclear applications. Journal of Nuclear Materials, 2014,453(1/2/3):233-238. |
[14] | NIKONOROV N V, SIDOROV A I, TSEKHOMSKII V A. Silver nanoparticles in oxide glasses: technologies and properties. In-Tech, 2010,177(10):177-200. |
[15] | KREIBIG U. Small silver particles in photosensitive glass: their nucleation and growth. Applied Physics, 1976,10(3):255-264. |
[16] | ORESHKINA K V, DUBROVIN V D, IGNAT’EV A I, et al. The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses. Optics & Spectroscopy, 2017,123(4):590-596. |
[17] | LUMEAU J, GLEBOVA L, GLEBOV L B. Absorption and scattering in photo-thermo-refractive glass induced by UV- exposure and thermal development. Optical Materials, 2014,36(3):621-627. |
[18] | MARTINA STOICA, MICHAEL KRACKER. CHRISTIAN RÜSSEL. Photoinduced formation of silver nanoparticles in a new Na2O/K2O/CaO/CaF2/Al2O3/ZnO/SiO2 photo thermal refractive glass: evidence of Ag-AgBr core shell structures. Opt. Mater. Express, 2017,7(12):4427-4434. |
[19] | NACHAROV A P, NIKONOROV N V, SIDOROV A I, et al. Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses. Glass Physics and Chemistry, 2008,34(6):693-699. |
[20] | DUBROVIN V D, IGNATIEV A I, NEVEDOMSKII V M, et al. The influence of synthesis conditions and ultraviolet irradiation on the morphology and concentration of silver nanocrystals in photothermo-refractive glasses. Glass Technology European Journal of Glass Science & Technology Part A, 2014. 55(6):191-195. |
[21] | NIKONOROV N V, SAVIN A A, TSEKHOMSKII V A. Influence of ionizing radiation on the spectral properties of photo-thermo- refractive glass containing silver nanoparticles. Glass Physics & Chemistry, 2013,39(3):261-265. |
[22] | CLAUDIO J M, GONZALEI J P D, LIMA J F, et al. Electron paramagnetic resonance (EPR) studies on the photo-thermo ionization process of photo-thermo-refractive glasses. Journal of Non Crystalline Solids, 2016,452:320-324. |
[23] |
SIMO A, POLTE J, PFANDER N, et al. Formation mechanism of silver nanoparticles stabilized in glassy matrices. Journal of the American Chemical Society, 2012,134(45):18824-18833.
URL PMID |
[1] | 王晓波, 朱于良, 薛稳超, 史汝川, 骆柏锋, 罗骋韬. PT含量变化对PMN-PT单晶的大功率性能影响[J]. 无机材料学报, 2025, 40(7): 840-846. |
[2] | 汤新丽, 丁自友, 陈俊锐, 赵刚, 韩颖超. 基于稀土铕离子荧光标记的磷酸钙纳米材料体内分布与代谢研究[J]. 无机材料学报, 2025, 40(7): 754-764. |
[3] | 余乐洋阳, 赵芳霞, 张舒心, 徐以祥, 牛亚然, 张振忠, 郑学斌. 感应等离子球化技术制备喷涂用高熵硼化物粉体[J]. 无机材料学报, 2025, 40(7): 808-816. |
[4] | 杨光, 张楠, 陈舒锦, 王义, 谢安, 严育杰. 基于多孔ITO电极的WO3薄膜的制备及其电致变色性能[J]. 无机材料学报, 2025, 40(7): 781-789. |
[5] | 孙晶, 李翔, 毛小建, 章健, 王士维. 月桂酸改性剂对氮化铝粉体抗水解性能的影响[J]. 无机材料学报, 2025, 40(7): 826-832. |
[6] | 柴润宇, 张镇, 王孟龙, 夏长荣. 直接组装法制备氧化铈基金属支撑固体氧化物燃料电池[J]. 无机材料学报, 2025, 40(7): 765-771. |
[7] | 王鲁杰, 张玉新, 李彤阳, 于源, 任鹏伟, 王建章, 汤华国, 姚秀敏, 黄毅华, 刘学建, 乔竹辉. 深海服役环境下碳化硅陶瓷材料的腐蚀及磨损行为[J]. 无机材料学报, 2025, 40(7): 799-807. |
[8] | 李文元, 徐佳楠, 邓瀚澳, 常爱民, 张博. 钒取代对LaTaO4陶瓷微观结构和微波介电性能的影响[J]. 无机材料学报, 2025, 40(6): 697-703. |
[9] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[10] | 董晨雨, 郑维杰, 马一帆, 郑春艳, 温峥. 压电力显微镜表征Pb(Mg,Nb)O3-PbTiO3超薄膜弛豫特性[J]. 无机材料学报, 2025, 40(6): 675-682. |
[11] | 何国强, 张恺恒, 王震涛, 包健, 席兆琛, 方振, 王昌昊, 王威, 王鑫, 姜佳沛, 李祥坤, 周迪. Ba(Nd1/2Nb1/2)O3: 一种被低估的K40微波介质陶瓷[J]. 无机材料学报, 2025, 40(6): 639-646. |
[12] | 张家维, 陈宁, 程原, 王博, 朱建国, 金城. Bi4Ti3O12铋层状压电陶瓷的A/B位掺杂及其电学性能[J]. 无机材料学报, 2025, 40(6): 690-696. |
[13] | 安然, 林锶, 郭世刚, 张冲, 祝顺, 韩颖超. 铁掺杂纳米羟基磷灰石的制备及紫外吸收性能研究[J]. 无机材料学报, 2025, 40(5): 457-465. |
[14] | 陈义, 邱海鹏, 陈明伟, 徐昊, 崔恒. SiC/SiC复合材料基体硼改性方法及其力学性能研究[J]. 无机材料学报, 2025, 40(5): 504-510. |
[15] | 熊思宇, 莫尘, 朱肖伟, 朱国斌, 陈德钦, 刘来君, 施晓东, 李纯纯. 超低介电常数LiBxAl1-xSi2O6微波介质陶瓷的低温烧结[J]. 无机材料学报, 2025, 40(5): 536-544. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||