无机材料学报 ›› 2023, Vol. 38 ›› Issue (5): 503-510.DOI: 10.15541/jim20220413 CSTR: 32189.14.10.15541/jim20220413
所属专题: 【能源环境】光催化(202312)
收稿日期:
2022-07-15
修回日期:
2022-11-11
出版日期:
2022-11-16
网络出版日期:
2022-11-16
通讯作者:
王丽萍, 教授. E-mail: wlpcumt@126.com作者简介:
伍 林(1999-), 男, 硕士研究生. E-mail: TS21160095A31LD@cumt.edu.cn
基金资助:
WU Lin(), HU Minglei, WANG Liping(
), HUANG Shaomeng, ZHOU Xiangyuan
Received:
2022-07-15
Revised:
2022-11-11
Published:
2022-11-16
Online:
2022-11-16
Contact:
WANG Lingping, professor. E-mail: wlpcumt@126.comAbout author:
WU Lin (1999-), male, Master candidate. E-mail: TS21160095A31LD@cumt.edu.cn
Supported by:
摘要:
通过水热法合成了钛羟基磷灰石(TiHAP)与g-C3N4复合光催化剂(TiHAP@g-C3N4), 并对其结构和光学特性进行表征, 通过甲基橙(MO)降解实验评价其光催化活性。结果表明:样品中短棒状TiHAP生长在g-C3N4表面, 均保持原有晶型和化学结构; 制备的TiHAP@g-C3N4纯度高, 比表面积达107.92 m2/g, 较TiHAP、g-C3N4分别增大约135%、44%; 在TiHAP@g-C3N4添加量为1.0 g/L、pH 7条件下, 120 min内MO降解率达96.35%; 3次循环实验降解率保持在80.02%以上, TiHAP@g-C3N4光催化性能良好且结构稳定。空穴(h+)在MO降解过程中作用最大, ·O2-与·OH的作用递减。TiHAP@g-C3N4异质结的构建, 增强了对光的吸收, 提高了光生电子-h+的分离效率, 保留了氧化还原性更强的TiHAP价带h+和g-C3N4导带电子, 从而提升了光催化性能。
中图分类号:
伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510.
WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange[J]. Journal of Inorganic Materials, 2023, 38(5): 503-510.
图3 TiHAP、g-C3N4和TiHAP@g-C3N4的(a)N2吸附-脱附曲线及(b)孔径分布图
Fig. 3 (a) N2 adsorption-desorption curves and (b) pore size distributions of TiHAP, g-C3N4 and TiHAP@g-C3N4
Sample | SBET/ (m2·g-1) | Pore volume/ (cm3·g-1) | Average pore/ nm |
---|---|---|---|
TiHAP | 46.02 | 0.1368 | 11.89 |
g-C3N4 | 74.99 | 0.1370 | 7.30 |
TiHAP@g-C3N4 | 107.92 | 0.3107 | 11.52 |
表1 TiHAP、g-C3N4和TiHAP@g-C3N4的BET比表面积及孔结构数据
Table 1 BET specific surface area and pore structure of TiHAP, g-C3N4 and TiHAP@g-C3N4
Sample | SBET/ (m2·g-1) | Pore volume/ (cm3·g-1) | Average pore/ nm |
---|---|---|---|
TiHAP | 46.02 | 0.1368 | 11.89 |
g-C3N4 | 74.99 | 0.1370 | 7.30 |
TiHAP@g-C3N4 | 107.92 | 0.3107 | 11.52 |
Sample | Band gap energy/eV | Conduction band edge/V(vs. NHE) | Valence band gap/ V(vs. NHE) |
---|---|---|---|
TiHAP | 3.88 | -0.70 | 3.18 |
g-C3N4 | 2.90 | -1.09 | 1.82 |
表2 TiHAP和g-C3N4的能带位置
Table 2 Band position of TiHAP and g-C3N4
Sample | Band gap energy/eV | Conduction band edge/V(vs. NHE) | Valence band gap/ V(vs. NHE) |
---|---|---|---|
TiHAP | 3.88 | -0.70 | 3.18 |
g-C3N4 | 2.90 | -1.09 | 1.82 |
图S4 TiHAP@g-C3N4添加量为0.5 g/L、pH 5时甲基橙浓度和总有机碳(TOC)变化
Fig. S4 Change of methyl orange concentration and TOC in solution with TiHAP@g-C3N4 dosage of 0.5 g/L and pH 5
图S5 TiHAP@g-C3N4光催化反应前后的(a)XRD图谱和(b)FT-IR谱图
Fig. S5 (a) XRD patterns and (b) FT-IR spectra of TiHAP@g-C3N4 before (fresh) and after (used) photocatalytic reactions
[1] |
CHEN W S, MO J H, DU X, et al. Biomimetic dynamic membrane for aquatic dye removal. Water Research, 2019, 151: 243.
DOI PMID |
[2] | PENNINKS A, BAERT K, LEVORATO S, et al. Dyes in aquaculture and reference points for action. EFSA journal, 2017, 15(7): e04920. |
[3] |
MATHUR N, BHATNAGAR P. Mutagenicity assessment of textile dyes from Sanganer (Rajasthan). Journal of Environmental Biology, 2007, 28(1): 123.
PMID |
[4] | AJIBOYE T O, OYEWO O A, ONWUDIWE D C. Adsorption and photocatalytic removal of Rhodamine B from wastewater using carbon-based materials. Flatchem, 2021, 29: 20. |
[5] |
ZHANG D, GUO Y L, ZHAO Z K. Porous defect-modified graphitic carbon nitride via a facile one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Catalysis B-Environmental, 2018, 226(15): 1.
DOI URL |
[6] |
XU T H, ZOU R J, LEI X F, et al. New and stable g-C3N4/HAp composites as highly efficient photocatalysts for tetracycline fast degradation. Applied Catalysis B-Environmental, 2019, 245: 662.
DOI URL |
[7] |
ZARGAZI M, CHAHKANDI M, BAGHAYERI M. New highly efficient 2D/1D HAp/g-C3N4 photocatalyst thin film insight into crystal orientation and C-vacancy effects. Chemosphere, 2022, 303(part 2): 135079.
DOI URL |
[8] |
GOVINDASAMY P, KANDASAMY B, THANGAVELU P, et al. Biowaste derived hydroxyapatite embedded on two-dimensional g-C3N4 nanosheets for degradation of hazardous dye and pharmacological drug via Z-scheme charge transfer. Scientific Reports, 2022, 12: 11572.
DOI |
[9] |
WAKAMURA M, HASHIMOTO K, WATANABE T. Photocatalysis by calcium hydroxyapatite modified with Ti(IV): albumin decomposition and bactericidal effect. Langmuir, 2003, 19(8): 3428.
DOI URL |
[10] |
ISHISONE K, JIRABORVORNPONGSA N, ISOBE T, et al. Experimental and theoretical investigation of WOxmodification effects on the photocatalytic activity of titanium-substituted hydroxyapatite. Applied Catalysis B-Environmental, 2020, 264: 118516.
DOI URL |
[11] |
ISHISONE K, ISOBE T, MATSUSHITA S, et al. LaO1.5 surface modification of titanium-substituted hydroxyapatite photocatalyst and effects on 2-propanol photocatalytic decomposition mechanisms. Applied Catalysis B-Environmental, 2021, 283: 119658.
DOI URL |
[12] |
WANG G, YANG L, JIANG L, et al. Simple combination of humic acid with biogenic hydroxyapatite achieved highly efficient removal of methylene blue from aqueous solution. RSC Advances, 2016, 6(72): 67888.
DOI URL |
[13] | TSUKADA M, WAKAMURA M, YOSHIDA N, et al. Band gap and photocatalytic properties of Ti-substituted hydroxyapatite: comparison with anatase-TiO2. Journal of Molecular Catalysis A-Chemical, 2011, 338(1-2): 18. |
[14] | 鞠传伦, 张健伟, 孙卫玲, 等. 载钛羟基磷灰石对水中EE2光催化降解规律及途径研究. 北京大学学报(自然科学版), 2018, 54(4): 815. |
[15] |
SHENG G H, QIAO L L, MOU Y Q. Preparation of TiO2/hydroxyapatite composite and its photocatalytic degradation of methyl orange. Journal of Environmental Engineering, 2011, 137(7): 611.
DOI URL |
[16] |
LI J Q, HAO H J, ZHU Z F. Construction of g-C3N4-WO3-Bi2WO6 double Z-scheme system with enhanced photoelectrochemical performance. Materials Letters, 2016, 168: 180.
DOI URL |
[17] |
QIU C F, XIAO X F, LIU R F, et al. Biomimetic synthesis of spherical nano-hydroxyapatite with polyvinylpyrrolidone as template. Materials Science and Technology, 2008, 24(5): 612.
DOI URL |
[18] |
YUE P, ZHANG G, CAO X, et al. In situ synthesis of Z-scheme BiPO4/BiOCl0.9I0.1 heterostructure with multiple vacancies and valence for efficient photocatalytic degradation of organic pollutant. Separation and Purification Technology, 2019, 213: 34.
DOI URL |
[19] |
JIANG L, YUAN X, ZENG G, et al. In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Applied Catalysis B-Environmental, 2018, 227: 376.
DOI URL |
[20] | ZHAO C X, ZHANG W D. Preparation and antibacterial properties of titanium (Ⅳ) and zinc (Ⅱ) co-doped nanohydroxyapatite. Journal of Inorganic Materials, 2009, 24(6): 1243. |
[21] |
LIU X, CHEN J, YANG L, et al. 2D/2D g-C3N4/TiO2 with exposed (001) facets Z-Scheme composites accelerating separation of interfacial charge and visible photocatalytic degradation of Rhodamine B. Journal of Physics and Chemistry of Solids, 2022, 160: 110339.
DOI URL |
[22] |
TSURUOKA A, ISOBE T, MATSUSHITA S, et al. Comparison of photocatalytic activity and surface friction force variation on Ti-doped hydroxyapatite and anatase under UV illumination. Journal of Photochemistry and Photobiology A-Chemistry, 2015, 311: 160.
DOI URL |
[23] |
CHAHKANDI M, ZARGAZI M, AHMADI A, et al. In situ synthesis of holey g-C3N4 nanosheets decorated by hydroxyapatite nanospheres as efficient visible light photocatalyst. RSC Advances, 2021, 11(50): 31174.
DOI URL |
[24] |
WANG D J, ZHANG J, GUO L, et al. Modification strategies for semiconductor photocatalyst based on energy band structure theory. Journal of Inorganic Materials, 2015, 30(7): 683.
DOI URL |
[25] |
ZHAO X X, YANG H, LI R S, et al. Synthesis of heterojunction photocatalysts composed of Ag2S quantum dots combined with Bi4Ti3O12nanosheets for the degradation of dyes. Environmental Science and Pollution Research, 2019, 26(6): 5524.
DOI |
[26] |
LUO J, CHEN J, GUO R, et al. Rational construction of direct Z-scheme LaMnO3/g-C3N4 hybrid for improved visible-light photocatalytic tetracycline degradation. Separation and Purification Technology, 2019, 211: 882.
DOI URL |
[1] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[2] | 叶茂森, 王耀, 许冰, 王康康, 张胜楠, 冯建情. II/Z型Bi2MoO6/Ag2O/Bi2O3异质结可见光催化降解四环素[J]. 无机材料学报, 2024, 39(3): 321-329. |
[3] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[4] | 张淑敏, 奚晓雯, 孙磊, 孙平, 王德强, 魏杰. 基于声动力和类酶活性的铌基涂层: 抗菌及促进细胞增殖与分化[J]. 无机材料学报, 2024, 39(10): 1125-1134. |
[5] | 胡盈, 李自清, 方晓生. 溶液法制备AgBi2I7薄膜及其光电探测性能研究[J]. 无机材料学报, 2023, 38(9): 1055-1061. |
[6] | 李跃军, 曹铁平, 孙大伟. S型异质结Bi4O5Br2/CeO2的制备及其光催化CO2还原性能[J]. 无机材料学报, 2023, 38(8): 963-970. |
[7] | 吐尔洪·木尼热, 赵红刚, 马玉花, 齐献慧, 李钰宸, 闫沉香, 李佳文, 陈平. 单晶WO3/红磷S型异质结的构建及光催化活性研究[J]. 无机材料学报, 2023, 38(6): 701-707. |
[8] | 马润东, 郭雄, 施凯旋, 安胜利, 王瑞芬, 郭瑞华. MoS2/g-C3N4 S型异质结的构建及光催化性能研究[J]. 无机材料学报, 2023, 38(10): 1176-1182. |
[9] | 马心全, 李喜宝, 陈智, 冯志军, 黄军同. S型异质结BiOBr/ZnMoO4的构建及光催化降解性能研究[J]. 无机材料学报, 2023, 38(1): 62-70. |
[10] | 王如意, 徐国良, 杨蕾, 邓崇海, 储德林, 张苗, 孙兆奇. p-n异质结BiVO4/g-C3N4光阳极的制备及其光电化学水解性能[J]. 无机材料学报, 2023, 38(1): 87-96. |
[11] | 陈士昆, 王楚楚, 陈晔, 李莉, 潘路, 文桂林. 磁性Ag2S/Ag/CoFe1.95Sm0.05O4 Z型异质结的制备及光催化降解性能[J]. 无机材料学报, 2022, 37(12): 1329-1336. |
[12] | 高娃, 熊宇杰, 吴聪萍, 周勇, 邹志刚. 基于超薄纳米结构的光催化二氧化碳选择性转化[J]. 无机材料学报, 2022, 37(1): 3-14. |
[13] | 刘彭, 吴仕淼, 吴昀峰, 张宁. Zn0.4(CuGa)0.3Ga2S4/CdS光催化材料的制备及其CO2还原性能[J]. 无机材料学报, 2022, 37(1): 15-21. |
[14] | 赵宇鹏,贺勇,张敏,史俊杰. 新型二维Zr2CO2/InS异质结可见光催化产氢性能的第一性原理研究[J]. 无机材料学报, 2020, 35(9): 993-998. |
[15] | 许世超,朱天哲,乔阳,白学健,唐楠,郑春明. Z型BiVO4/GO/g-C3N4复合材料的制备及其可见光下催化性能[J]. 无机材料学报, 2020, 35(7): 839-846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||