| [1] | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries. Chemistry of Materials, 2010,  22(3):587. DOI    
																																					URL
 | 
																													
																						| [2] | ZHAO J, LIAO L, SHI F, et al. Surface fluorination of reactive battery anode materials for enhanced stability. Journal of the American Chemical Society, 2017,  139(33):11550. DOI    
																																																	PMID
 | 
																													
																						| [3] | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001,  414(6861):359. DOI    
																																					URL
 | 
																													
																						| [4] | ZHI J, YAZDI A Z, VALAPPIL G, et al. Artificial solid electrolyte interphase for aqueous lithium energy storage systems. Science Advances, 2017,  3(9):e1701010. DOI    
																																					URL
 | 
																													
																						| [5] | JUN K, SUN Y, XIAO Y, et al. Lithium superionic conductors with corner-sharing frameworks. Nature Materials, 2022, 21: 924. | 
																													
																						| [6] | LIU J, BAO Z, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019,  4(3):180. DOI
 | 
																													
																						| [7] | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices. Science, 2011,  334(6058):928. DOI    
																																																	PMID
 | 
																													
																						| [8] | MAUGER A, JULIEN C M, PAOLELLA A, et al. Building better batteries in the solid state: a review. Materials, 2019,  12(23):3892. DOI    
																																					URL
 | 
																													
																						| [9] | MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2017,  2(4):16103. DOI
 | 
																													
																						| [10] | ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem, 2019,  5(9):2326. DOI
 | 
																													
																						| [11] | TAN S J, YUE J, TIAN Y F, et al. In-situ encapsulating flame- retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Storage Materials, 2021, 39: 186. | 
																													
																						| [12] | ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019,  4(5):365. DOI
 | 
																													
																						| [13] | ZHOU Z, FENG Y, WANG J, et al. A robust, highly stretchable ion-conducive skin for stable lithium metal batteries. Chemical Engineering Journal, 2020, 396: 125254. | 
																													
																						| [14] | WILKEN S, TRESKOW M, SCHEERS J, et al. Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy. RSC Advances, 2013,  3(37):16359. DOI    
																																					URL
 | 
																													
																						| [15] | LIU F Q, WANG W P, YIN Y X, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances, 2018,  4(10):eaat5383. DOI    
																																					URL
 | 
																													
																						| [16] | XU C, SUN B, GUSTAFSSON T, et al. Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. Journal of Materials Chemistry A, 2014,  2(20):7256. DOI    
																																					URL
 | 
																													
																						| [17] | WEI Z, CHEN S, WANG J, et al. Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. Journal of Materials Chemistry A, 2018,  6(27):13438. DOI    
																																					URL
 | 
																													
																						| [18] | DI NOTO V, LAVINA S, GIFFIN G A, et al. Polymer electrolytes: present, past and future. Electrochimica Acta, 2011,  57(15):4. DOI    
																																					URL
 | 
																													
																						| [19] | XUE Z, HE D, XIE X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015,  3(38):19218. DOI    
																																					URL
 | 
																													
																						| [20] | MINDEMARK J, LACEY M J, BOWDEN T, et al. Beyond PEO-Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science, 2018, 81: 114. | 
																													
																						| [21] | ARAVINDAN V, GNANARAJ J, MADHAVI S, et al. Lithium-ion conducting electrolyte salts for lithium batteries. Chemistry-A European Journal, 2011,  17(51):14326. | 
																													
																						| [22] | XU K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014,  114(23):11503. DOI    
																																																	PMID
 | 
																													
																						| [23] | YANG H, ZHUANG G V, ROSS JR P N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. Journal of Power Sources, 2006,  161(1):573. DOI    
																																					URL
 | 
																													
																						| [24] | LI Q, LIU G, CHENG H, et al. Low-temperature electrolyte design for lithium-ion batteries: prospect and challenges. Chemistry-A European Journal, 2021,  27(64):15842. DOI    
																																					URL
 | 
																													
																						| [25] | JIAO S, REN X, CAO R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018,  3(9):739. DOI
 | 
																													
																						| [26] | LIU Y, YU P, SUN Q, et al. Predicted operando polymerization at lithium anode via boron insertion. ACS Energy Letters, 2021,  6(6):2320. DOI    
																																					URL
 | 
																													
																						| [27] | CAO W, LU J, ZHOU K, et al. Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization. Nano Energy, 2022, 95: 106983. | 
																													
																						| [28] | CHENG S, SMITH D M, LI C Y. How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes? Macromolecules, 2014,  47(12):3978. DOI    
																																					URL
 | 
																													
																						| [29] | JOHANSSON P. First principles modelling of amorphous polymer electrolytes: Li+-PEO, Li+-PEI, and Li+-PES complexes. Polymer, 2001,  42(9):4367. DOI    
																																					URL
 | 
																													
																						| [30] | SUN B, MINDEMARK J, EDSTRÖM K, et al. Polycarbonate- based solid polymer electrolytes for Li-ion batteries. Solid State Ionics, 2014, 262: 738. | 
																													
																						| [31] | SILVA M M, BARROS S C, SMITH M J, et al. Characterization of solid polymer electrolytes based on poly (trimethylenecarbonate) and lithium tetrafluoroborate. Electrochimica Acta, 2004,  49(12): 1887. DOI    
																																					URL
 | 
																													
																						| [32] | BARBOSA P, RODRIGUES L, SILVA M M, et al. Characterization of pTMCnLiPF6 solid polymer electrolytes. Solid State Ionics, 2011,  193(1):39. DOI    
																																					URL
 |