无机材料学报 ›› 2022, Vol. 37 ›› Issue (8): 883-890.DOI: 10.15541/jim20220097 CSTR: 32189.14.10.15541/jim20220097
所属专题: 【信息功能】敏感陶瓷(202409); 【能源环境】金属有机框架材料(202309); 【信息功能】电致变色与热致变色材料(202312)
张笑宇(), 刘永盛, 李然, 李耀刚, 张青红, 侯成义, 李克睿(
), 王宏志(
)
收稿日期:
2022-02-28
修回日期:
2022-05-31
出版日期:
2022-08-20
网络出版日期:
2022-06-03
通讯作者:
王宏志, 教授. E-mail: wanghz@dhu.edu.cn;作者简介:
张笑宇(1998-), 男, 硕士研究生. E-mail: dhuzxyu@163.com
基金资助:
ZHANG Xiaoyu(), LIU Yongsheng, LI Ran, LI Yaogang, ZHANG Qinghong, HOU Chengyi, LI Kerui(
), WANG Hongzhi(
)
Received:
2022-02-28
Revised:
2022-05-31
Published:
2022-08-20
Online:
2022-06-03
Contact:
WANG Hongzhi, professor. E-mail: wanghz@dhu.edu.cn;About author:
ZHANG Xiaoyu(1998-), male, Master candidate. E-mail: dhuzxyu@163.com
Supported by:
摘要:
室温离子液体具有宽电化学窗口和良好的环境稳定性, 是电致变色器件的理想电解质。然而传统电致变色材料的晶格间隙较窄, 限制了离子液体中大尺寸离子的扩散, 且大离子反复脱/嵌会破坏传统电致变色材料的结构, 导致性能衰减。金属有机框架材料(MOFs)是一种具有拓扑结构的多孔晶态材料, 有望为离子液体中大尺寸离子的传输提供通道。本工作在导电玻璃表面制备了三亚苯类Cu3(HHTP)2 (HHTP=2,3,6,7,10,11-六羟基三苯并菲) MOF薄膜, 并研究了Cu3(HHTP)2薄膜在离子液体电解质中电化学和电致变色行为和性能。结果表明, 相对于传统的LiClO4/PC和NaClO4/PC电解质, Cu3(HHTP)2薄膜在离子液体[EMIm]BF4中表现出更低的接触电阻和更高的离子扩散效率, 电极的着色/褪色速度得到了显著提高(着色时间由10.3 s缩短至8.0 s, 褪色时间由23.6 s缩短至5.2 s)。同时, Cu3(HHTP)2薄膜在[EMIm]BF4中也具有更高的光调制范围和着色效率。这项工作展现出MOFs/离子液体电化学体系在电致变色领域中的潜在应用价值。
中图分类号:
张笑宇, 刘永盛, 李然, 李耀刚, 张青红, 侯成义, 李克睿, 王宏志. 基于Cu3(HHTP)2薄膜的离子液体电致变色电极[J]. 无机材料学报, 2022, 37(8): 883-890.
ZHANG Xiaoyu, LIU Yongsheng, LI Ran, LI Yaogang, ZHANG Qinghong, HOU Chengyi, LI Kerui, WANG Hongzhi. Cu3(HHTP)2 Film-based Ionic-liquid Electrochromic Electrode[J]. Journal of Inorganic Materials, 2022, 37(8): 883-890.
图1 (a) Cu3(HHTP)2薄膜的表征结果
Fig. 1 Characterization of Cu3(HHTP)2 films (a) Change of absorbance at 800 nm wavelength with film thickness, inset showing the pictures of Cu3(HHTP)2 films obtained in different growth-cycles; (b) Surface SEM image of the Cu3(HHTP)2 film obtained from 20 cycles; (c) XRD patterns of Cu3(HHTP)2; (d) Raman spectra of Cu3(HHTP)2 and HHTP ligand
图2 Cu3(HHTP)2的XPS谱图和孔径分布图
Fig. 2 XPS spectrum and poresize distribution of Cu3(HHTP)2 (a) XPS full spectrum; (b) High resolution XPS spectrum of Cu2p3/2; (c) Pore size distribution diagram with inset showing N2 adsorption isotherm curves for Cu3(HHTP)2 powders measured at 77 K
图3 (a)不同厚度的Cu3(HHTP)2薄膜在[EMIm]BF4中-0.9和0.4 V的恒定电压下, 在800 nm波长处的透过率变化图谱(插图为20C薄膜在-0.9 和0.4 V下的照片); (b) 20C薄膜在不同电解质中, -0.9和0.4 V下的紫外-可见透过光图谱(300~800 nm); (c) 20C薄膜在不同电解质中, 在波长800 nm处的透过光谱时间响应图; (d) 20C薄膜分别在LiClO4/PC、NaClO4/PC、[EMIm]BF4和[BMIm]BF4溶液中800 nm波长处的着色效率
Fig. 3 (a) Transmittance at 800 nm wavelength for Cu3(HHTP)2 films with different thicknesses at constant voltages of -0.9 and 0.4 V in [EMIm]BF4 with inset photos showing 20C film at -0.9 V and 0.4 V ; (b) UV-Vis transmission spectra of 20C films measured in various electrolytes at wavelength from 300 to 800 nm; (c) Temporal response of the transmittance of 20C films measured in various electrolytes; (d) Coloring efficiencies of 20C films in various electrolytes, respectively
图4 20C薄膜在LiClO4/PC(a)、NaClO4/PC(b)、[EMIm]BF4(c)和[BMIm]BF4(d)中10~70 mV∙s-1扫描速率下的循环伏安曲线(插图为不同扫速下峰值电流(ip)与扫描速率平方根(V1/2)的函数; (e) 20C薄膜分别在不同电解质中的Nyquist阻抗数据(点)和相应拟合结果(线)(插图为对应的等效电路); (f)从电化学阻抗谱和循环伏安测试中计算得出20C薄膜在不同电解质中的扩散系数
Fig. 4 Cyclic voltammetry curves of 20C films at scan rates from 10 to 70 mV∙s-1 in (a) LiClO4/PC, (b) NaClO4/PC solution, (c) [EMIm]BF4, and (d) [BMIm]BF4 with inset showing peak current at different scan rates (ip) as a function of square root of the scan rate (V1/2)); (e) Nyquist impedance data (dots) and corresponding fitting results (lines) of 20C films in various electrolytes, respectively with inset showing corresponding equivalent circuit; (f) Calculated diffusion coefficients of 20C films in various electrolytes from electrochemical impedance spectroscopy and cyclic voltammetry, respectively
图5 Cu3(HHTP)2基电致变色器件在(a)初始态和(b)透明态的照片; (c)器件在+3和-3 V电压下的紫外-可见光透射图谱
Fig. 5 Photos of (a) bleaching state and (b) coloring state of Cu3(HHTP)2 EC device, and (c) UV-Vis transmission spectra of Cu3(HHTP)2 EC devices at voltages of +3 and -3 V
图6 (a)基于Cu3(HHTP)2和PEDOT电致变色全器件结构示意图和(b)电致变色全器件在+3和-3 V电压下的紫外-可见光透射图谱
Fig. 6 (a) Structure diagram of Cu3(HHTP)2 and poly (3,4-ethylene dioxythiophene) (PEDOT) electrochromic multiple device, and (b) UV-Vis transmission spectra of multiple devices at voltages of +3 and -3 V
[1] |
XU C, LIU L, LEGENSKI S, et al. Switchable window based on electrochromic polymers. Journal of Materials Research, 2004, 19(7): 2072-2080.
DOI URL |
[2] |
WU X, ZHENG J, XU C. A newly-designed self-powered electrochromic window. Science China Chemistry, 2016, 60(1): 84-89.
DOI URL |
[3] |
WADE C R, LI M, DINCĂ M. Facile deposition of multicolored electrochromic metal-organic framework thin films. Angewandte Chemie International Edition, 2013, 52: 13377-13381.
DOI URL |
[4] |
WADE C R, LI M, DINCĂ M. Transparent-to-dark electrochromic behavior in naphthalene-diimide-based mesoporous MOF-74 analogs. Chem, 2016, 1(11): 264-272.
DOI URL |
[5] |
RIERA M, LAMBROS E, NGUYEN T, et al. Low-order many-body interactions determine the local structure of liquid water. Chemical Science, 2019, 10(35): 8211-8218.
DOI URL |
[6] |
LI R, LI K, WANG G, et al. Ion-transport design for high- performance Na+-based electrochromics. ACS Nano, 2018, 12: 3759-3768.
DOI URL |
[7] |
MUKHIYA T, OJHA G, DAHAL B, et al. Designed assembly of porous cobalt oxide/carbon nanotentacles on electrospun hollow carbon nanofibers network for supercapacitor. ACS Applied Energy Materials, 2020, 3(4): 3435-3444.
DOI URL |
[8] |
QIU X, WANG N, DONG X, et al. A high-voltage Zn-organic battery using a nonflammable organic electrolyte. Angewandte Chemie International Edition, 2021, 60: 21025-21032.
DOI URL |
[9] |
KIM J, LEE J, YOU J, et al. Conductive polymers for next- generation energy storage systems: recent progress and new functions. Materials Horizons, 2016, 3(6): 517-535.
DOI URL |
[10] |
CHEN J, NAVEED A, NULI Y, et al. Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Materials, 2020, 31: 382-400.
DOI URL |
[11] |
DANG L, WICK C. Anion effects on interfacial absorption of gases in ionic liquids: a molecular dynamics study. Journal of Physical Chemistry B, 2011, 115(21): 6964-6970.
DOI URL |
[12] | WILKES J, ZAWOROTKO M. Air and water stable 1-ethyl-3- methylimidazolium based ionic liquids. Chemical Society Chemical Communications, 1992, 13: 965-967. |
[13] |
CHEN Y, ZHANG X, ZHANG D, et al. High performance supercapacitors based on reducedgraphene oxide in aqueous and ionic liquid electrolytes. Carbon, 2011, 49: 573-580.
DOI URL |
[14] |
BALDUCCI A, DUGAS R, TABERNA P, et al. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources, 2007, 165: 922-927.
DOI URL |
[15] |
JIN J, WEN Z, LIANG X, et al. Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery. Solid State Ionics, 2012, 225: 604-607.
DOI URL |
[16] | GELMAN D, SHVARTSEV B, EIN-ELI Y. Aluminum-air battery based on an ionic liquidelectrolyte. Journal of Physical Chemistry A, 2014, 2: 20237-20242. |
[17] |
KAZEMIABNAVI S, ZHANG Z, THORNTON K, et al. Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. Journal of Physical Chemistry B, 2016, 120: 5691-5702.
DOI URL |
[18] |
LI K, SHAO Y, YAN H, et al. Lattice-contraction triggered synchronous electrochromic actuator. Nature Communications, 2018, 9: 1-11.
DOI URL |
[19] |
SUN Z, PENG Y, WANG M, et al. Electrochemical deposition of Cu metal-organic framework films for the dual analysis of pathogens. Analytical Chemistry, 2021, 93(25): 8994-9001.
DOI URL |
[20] | WU F, FANG W, YANG X, et al. Two-dimensional-conjugated metal-organic framework with high electrical conductivity for electrochemical sensing. Journal of the Chinese Society, 2019, 66(5): 522-528. |
[21] |
LIU J, YANG D, ZHOU Y, et al. Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction. Angewandte Chemie International Edition, 2021, 60(26): 14473-14479.
DOI URL |
[22] | LI R, LI S, ZHANG Q, et al. Layer-by-layer assembled triphenylene-based MOFs films for electrochromic electrode. Inorganic Chemistry Communications, 2021, 123: 108354. |
[23] | GUARR T, ANSON C. Electropolymerization of ruthenium (bis (1, 10-phenanthroline) (4-methyl-4’-vinyl2, 2’-bipyridine) complexes through direct attack on the ligand ring system. Journal of Physical Chemistry, 1987, 91: 4037-4043. |
[24] |
LIANG H, LI R, LI C, et al. Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism. Materials Horizons, 2019, 6(3): 571-579.
DOI URL |
[25] |
SONG X, WANG X, LI Y, et al. 2D semiconducting metal-organic framework thin films for organic spin valves. Angewandte Chemie International Edition, 2020, 59(3): 1118-1123.
DOI URL |
[26] |
NINAWE P, GUPTA K, BALLAV N. Chemically integrating a 2D metal-organic framework with 2D functionalized graphene. Inorganic Chemistry, 2021, 60(24): 19079-19085.
DOI URL |
[27] |
AMMAR F, SAVEANT J. Convolution potential sweep voltammetry: Part IV. Homogenrous follow-up chemical-reactions. Journal of Electroanalytical Chemistry, 1975, 61: 251-263.
DOI URL |
[1] | 赵志翰, 郭鹏, 魏菁, 崔丽, 刘山泽, 张文龙, 陈仁德, 汪爱英. Ti-DLC薄膜压阻性能及载流子输运行为研究[J]. 无机材料学报, 2024, 39(8): 879-886. |
[2] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[3] | 甄明硕, 刘晓然, 范向前, 张文平, 严东东, 刘磊, 李晨. 电致变色型智能可视化湿度系统[J]. 无机材料学报, 2024, 39(4): 432-440. |
[4] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[5] | 杨志亮, 杨鏊, 刘鹏, 陈良贤, 安康, 魏俊俊, 刘金龙, 吴立枢, 李成明. 热管理用3英寸硅衬底金刚石薄膜的制备[J]. 无机材料学报, 2024, 39(3): 283-290. |
[6] | 刘松, 张发强, 罗进, 刘志甫. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3铁电薄膜制备及储能特性[J]. 无机材料学报, 2024, 39(3): 291-298. |
[7] | 徐向明, Husam N ALSHAREEF. MXetronics—MXene电子学[J]. 无机材料学报, 2024, 39(2): 171-178. |
[8] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[9] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[10] | 戴乐, 刘洋, 高轩, 王书豪, 宋雅婷, 唐明猛, 刘丽莎, 汪尧进. 浓度梯度掺杂实现BiFeO3薄膜自极化[J]. 无机材料学报, 2024, 39(1): 99-106. |
[11] | 胡盈, 李自清, 方晓生. 溶液法制备AgBi2I7薄膜及其光电探测性能研究[J]. 无机材料学报, 2023, 38(9): 1055-1061. |
[12] | 陈明月, 颜志超, 陈静, 李敏娟, 刘志勇, 蔡传兵. YBa2Cu3O7-δ薄膜的BaCl2/BaF2-MOD法制备及超导特性研究[J]. 无机材料学报, 2023, 38(2): 199-204. |
[13] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[14] | 牛海滨, 黄佳慧, 李倩文, 马董云, 王金敏. 多孔NiMoO4纳米片薄膜的直接水热生长及其电致变色性能[J]. 无机材料学报, 2023, 38(12): 1427-1433. |
[15] | 孙佳伟, 宛心怡, 杨婷, 马董云, 王金敏. Ti2Nb10O29薄膜的制备及其电致变色性能[J]. 无机材料学报, 2023, 38(12): 1434-1440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||