无机材料学报 ›› 2021, Vol. 36 ›› Issue (3): 269-276.DOI: 10.15541/jim20200070 CSTR: 32189.14.10.15541/jim20200070

所属专题: 能源材料论文精选(2021)

• 研究论文 • 上一篇    下一篇

空位缺陷对ZnNb2O6光电特性影响的第一性原理研究

闫宇星1(), 汪帆1, 张珏璇2, 李付绍1   

  1. 1. 曲靖师范学院 化学与环境科学学院, 曲靖 655011, 曲靖 655011
    2. 曲靖师范学院 教师与教育学院, 曲靖 655011
  • 收稿日期:2020-02-15 修回日期:2020-03-29 出版日期:2021-03-20 网络出版日期:2020-08-28
  • 作者简介:闫宇星(1980-), 男, 博士, 讲师. E-mail: 58536437@qq.com
  • 基金资助:
    云南省教育厅科学研究基金(2017ZDX148)

First Principles Study of Electronic Structure and Optical Properties of ZnNb2O6 with Vacancy Defects

YAN Yuxing1(), WANG Fan1, ZHANG Juexuan2, LI Fushao1   

  1. 1. College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
    2. College of Teacher Education, Qujing Normal University, Qujing 655011, China
  • Received:2020-02-15 Revised:2020-03-29 Published:2021-03-20 Online:2020-08-28
  • About author:YAN Yuxing(1980-), male, PhD, lecturer. E-mail: 58536437@qq.com
  • Supported by:
    Science and Research Program of Yunnan Education Department(2017ZDX148)

摘要:

铌酸盐类物质, 如LiNbO3, KNbO3, LnNbO4 (Ln=Pr, La, Ga, Y)等, 表现出优良的光敏特性, 受到广泛关注, 但过渡金属类铌酸盐研究较少, 其光电特性与空位缺陷的关系尚无深入探讨。基于密度泛函理论第一性原理方法, 本研究探讨了空位缺陷对ZnNb2O6体系光电特性的影响。通过对各体系几何结构、电子结构和光电谱的计算与分析, 清晰展示了体系中原子电负性与几何位置对结构与电子能级的影响, 八面体中心位置原子(如Zn, Nb)对能带的贡献类似, 形成空位缺陷时, 价带位置相对固定。但电负性大的Nb原子形成空位缺陷体系时, 产生的晶格畸变程度大, 导带负移明显, 吸收边红移, 有利于光电特性的提升; 八面体顶点位置原子O形成空位缺陷时, 晶格畸变程度较小, 导带与价带均发生负移, 费米面处出现杂质能级, 造成载流子“俘获阱”, 同时对电荷的再分配产生较大影响, 导致体系光谱整体蓝移, 光电谱强度全面提升。

关键词: ZnNb2O6, 空位缺陷, 光电特性, 第一性原理

Abstract:

Niobate materials, such as LiNbO3, KNbO3, LnNbO4 (Ln=Pr, La, Ga, Y), etc. have attracted wide attention due to their excellent photosensitivity. However, the transition metal niobate is rarely studied, and the relationship between its photoelectric properties and vacancy defects has not been thoroughly explored. Here, the effect of vacancy defect on electro-optical characteristics of ZnNb2O6 system was studied based on first-principles of density function theory. Its geometric structure, electronic structure, and optical spectrum clearly revealed the effect of electro- negativity and geometric position of atoms on the structure and electronic energy level. At the center of the octahedron, atoms, such as Zn and Nb, contributed similarly to the energy band, and had relatively fixed positions on the valance band when they formed vacancy defects. However, Nb atoms with larger electro-negativity generated larger lattice distortions, more obvious negative shifts of the conduction band, and red shifts of the absorption edge upon the formation of vacancy defects, which are conducive to improving electro-optical characteristics. Atom O at the vertices of the octahedron generated smaller lattice distortions when vacancy defects formed. However, negative shifts occurred at the conduction and valance bands, and impurity energy levels emerged on the Fermi surface, which induced the formation of “capture traps” on the charge carriers. This in turn exerted a larger influence on the redistribution of charge, resulting in a blue shift of the system in whole, and an all-round enhancement of optical spectrum intensity.

Key words: ZnNb2O6, vacancy defect, optical-electrical characteristic, first-principles

中图分类号: