|
贵金属磷化物催化剂及其同步辐射X射线吸收谱
周煜筑, 张友魁, 宋礼
2021 Vol. 36 (3): 225244
摘要(
1019 )
HTML(
54)
PDF(27735KB)(
1697
)
电催化技术是可再生能源储存和转换领域中最有吸引力的技术之一, 其中贵金属纳米材料具有优异的电催化活性。贵金属在地球中的储量少且开发成本高, 如何在减少贵金属用量的同时提高催化剂活性和稳定性一直是电催化应用领域的研究焦点。贵金属磷化物作为新型电催化剂因其多功能活性位点、可调的结构和组分以及新颖的物理化学性质等优点, 受到了研究人员的广泛关注。与过渡金属磷化物相比, 贵金属磷化物具有更高的本征活性, 且在酸性条件下具有更好的稳定性。本综述介绍了近年来贵金属磷化物电催化剂的设计合成、结构调控、X射线吸收谱表征及其在电催化应用中的研究进展, 据此讨论当前所面临的机遇和挑战, 并展望原位同步辐射X射线表征技术在未来贵金属磷化物电催化剂研究中的应用前景。
|
|
高温隔热用微纳陶瓷纤维研究进展
张晓山, 王兵, 吴楠, 韩成, 吴纯治, 王应德
2021 Vol. 36 (3): 245256
摘要(
2218 )
HTML(
99)
PDF(15953KB)(
3354
)
陶瓷纤维具有密度低、强度高、耐高温、抗氧化和耐机械震动性能好等优点, 是空天飞行器、核能发电和化工冶金等热防护领域所需的关键高温隔热材料。传统陶瓷纤维直径粗(?>5 μm)、脆性大、热导率高, 在实际隔热领域应用中受到了极大限制。减小纤维直径, 制备微纳陶瓷纤维, 不仅有利于提高纤维力学性能, 还有望改善其高温隔热性能, 近年来引起了研究者的广泛关注。从微纳陶瓷纤维中影响热传输(气体热传导、固体热传导和辐射传热)的本征因素出发, 有针对地进行组成和结构优化, 进而改善其高温隔热性能, 是当前微纳陶瓷隔热纤维研究的重点方向。本文结合国内外研究现状, 在介绍微纳陶瓷纤维隔热机理的基础上, 按照纤维的组成和结构特点将目前微纳陶瓷隔热纤维分为三类, 即微纳陶瓷纤维气凝胶、中空/多孔微纳陶瓷纤维和复合微纳陶瓷纤维。对这三类不同特点的微纳陶瓷隔热纤维最新研究进展进行综述, 并展望了微纳陶瓷隔热纤维的未来发展方向。
|
|
纳米酶: 对抗细菌的新策略
傅佳骏, 沈涛, 吴佳, 王成
2021 Vol. 36 (3): 257268
摘要(
1350 )
HTML(
70)
PDF(11255KB)(
1947
)
由细菌引发的相关疾病和环境污染等问题引起了人们的高度重视, 同时随着抗生素的使用, 细菌的耐药性逐渐增强, 人们急需开发新型抗菌剂。诸如溶菌酶、髓过氧化物酶等天然酶具有显著的抗菌能力, 但其作为抗菌剂存在保质期短、生产成本高等缺点, 很难大规模生产。因此, 人们正探索寻求天然酶的替代品。纳米酶是新一代人工模拟酶, 兼具纳米材料独特的理化性质和类酶催化活性, 因其结构稳定、生产成本低等优点受到广泛关注。本文综述了纳米酶的抗菌机制和近期抗菌纳米酶的主要研究进展, 并对未来该领域的研究进行展望。
|
|
空位缺陷对ZnNb2O6光电特性影响的第一性原理研究
闫宇星, 汪帆, 张珏璇, 李付绍
2021 Vol. 36 (3): 269276
摘要(
763 )
HTML(
26)
PDF(4981KB)(
1174
)
铌酸盐类物质, 如LiNbO3, KNbO3, LnNbO4 (Ln=Pr, La, Ga, Y)等, 表现出优良的光敏特性, 受到广泛关注, 但过渡金属类铌酸盐研究较少, 其光电特性与空位缺陷的关系尚无深入探讨。基于密度泛函理论第一性原理方法, 本研究探讨了空位缺陷对ZnNb2O6体系光电特性的影响。通过对各体系几何结构、电子结构和光电谱的计算与分析, 清晰展示了体系中原子电负性与几何位置对结构与电子能级的影响, 八面体中心位置原子(如Zn, Nb)对能带的贡献类似, 形成空位缺陷时, 价带位置相对固定。但电负性大的Nb原子形成空位缺陷体系时, 产生的晶格畸变程度大, 导带负移明显, 吸收边红移, 有利于光电特性的提升; 八面体顶点位置原子O形成空位缺陷时, 晶格畸变程度较小, 导带与价带均发生负移, 费米面处出现杂质能级, 造成载流子“俘获阱”, 同时对电荷的再分配产生较大影响, 导致体系光谱整体蓝移, 光电谱强度全面提升。
|
|
NBT-BNT陶瓷的光致形变性能
董正明, 李修, 陈晨, 曹明贺, 易志国
2021 Vol. 36 (3): 277282
摘要(
612 )
HTML(
14)
PDF(927KB)(
834
)
光致形变材料在光致驱动器和传感器等光机电领域有重要的应用前景。本研究采用放电等离子体烧结法制备了Ni掺杂Na0.5Bi0.5TiO3-BaTiO3(NBT-BT)陶瓷材料Na0.5Bi0.5TiO3-Ba(Ti0.5Ni0.5)O3 (NBT-BNT)。进一步研究发现样品在405、520及655 nm波长激光照射下均表现出10 -3数量级的光致形变响应, 其光致形变系数达到10 -11 m 3/W。通过研究NBT-BNT陶瓷在外加光源照射下的原位X射线衍射图谱, 发现所有衍射峰在可见光照射下均发生小角度的偏移, 说明光照引起的材料晶格畸变是NBT-BNT材料光致形变效应的主要原因。
|
|
TiO2/Ti3C2Tx复合材料的制备及其杂化电容脱盐特性的研究
席文, 李海波
2021 Vol. 36 (3): 283291
摘要(
604 )
HTML(
24)
PDF(2499KB)(
1181
)
人口的快速增长和工业经济迅猛发展导致全球淡水资源短缺, 对海水和苦咸水进行淡化是解决淡水资源短缺的有效方法。本工作通过直接煅烧Ti3C2Tx制备了TiO2/Ti3C2Tx复合材料, 并研究了基于TiO2/Ti3C2Tx复合电极的杂化电容脱盐特性(Hybrid capacitive deionization, HCDI)。研究表明, 煅烧温度对TiO2/Ti3C2Tx的形貌、结构、电化学和脱盐特性有重要影响。以优化后的TiO2/Ti3C2Tx作为负极, 酸化活性炭(Active carbon, AC)为正极, 构筑了HCDI装置。在恒压模式下, 当工作电压为1.2 V时, TiO2/Ti3C2Tx‖AC在初始电导率为3000 μS·cm -1的NaCl溶液中的脱盐容量达到23.8 mg·g -1。经过20个循环后容量保持率为78%。此外, 通过研究TiO2/Ti3C2Tx复合电极脱盐前后的形貌和晶相发现在脱盐过程中钠离子嵌入到Ti3C2Tx的层间。
|
|
电活性镍钴双金属氧化物高选择性去除/回收水中磷酸盐离子
杨言言, 李永国, 祝小雯, 杜晓, 马旭莉, 郝晓刚
2021 Vol. 36 (3): 292298
摘要(
590 )
HTML(
10)
PDF(1267KB)(
1062
)
磷是植物体生长的重要营养素, 也是引发水体富营养化的重要因素, 因此废水中磷酸盐的去除与回收均至关重要。本研究采用单极脉冲电沉积法在炭布上制备镍钴双氢氧化物, 并于管式炉中原位焙烧制得镍钴双金属氧化物(NiCo-Layered Double Oxide, NiCo-LDO), 将其用于电控离子交换(Electrochemically Switched Ion Exchange, ESIX)过程实现PO4 3-的去除与回收。实验对比了ESIX与离子交换(Ion Exchange, IX)过程中NiCo-LDO对PO4 3-的去除性能, 并考察了其选择性及循环稳定性。结果表明, 在(10.00±0.05) mg/L的PO4 3-溶液中, ESIX过程中膜对PO4 3-的离子交换量约为IX的2倍; NiCo-LDO对PO4 3-具有高选择性, 且经过5次循环后, 离子交换量仍可达到初始值的92%以上; 结合XPS分析, 发现NiCo-LDO对PO4 3-的ESIX过程包括一个不可逆的“记忆效应”结构恢复过程及两个可逆的层板金属离子氧化/还原和PO4 3-与O-H基团的配体交换过程。
|
|
铂钴合金纳米电催化剂的制备及性能研究
朱勇, 顾军, 于涛, 何海佟, 姚睿
2021 Vol. 36 (3): 299305
摘要(
763 )
HTML(
40)
PDF(5787KB)(
1133
)
研制高活性的电催化剂是实现质子交换膜燃料电池的商业化应用必须解决的关键技术之一。本研究以三乙胺为碱性络合剂、硼氢化钠为还原剂, 采用液相合成法制备PtCo纳米合金电催化剂, 再通过高温热处理实现最佳电化学性能。采用各种表征方法对催化剂的微观结构及电化学性能进行测定, 探究硼氢化钠、三乙胺的添加量及高温热处理对催化剂电化学性能的影响。结果显示, 适量的硼氢化钠可提升催化剂的电化学活性面积, 三乙胺可以改变催化剂的质量活性, 高温热处理能有效提升催化剂的质量活性, 极大提升催化剂的氧还原反应(ORR)能力; 在同一测试体系下, 添加100 mg硼氢化钠及100 μL三乙胺在500 ℃高温热处理条件下制备的PtCo纳米合金电催化剂的质量活性达到133 mA/mgPt, 是田中贵金属工业株式会社(TKK)商用PtCo合金催化剂的3倍。
|
|
含SiC阵列改性涂层的新型SiC/Cf复合材料吸波性能研究
武志红, 邓悦, 蒙真真, 张国丽, 张路平, 王宇斌
2021 Vol. 36 (3): 306312
摘要(
686 )
HTML(
25)
PDF(2822KB)(
1221
)
以葡萄糖、Si粉、碳纤维为原料, 采用化学镀结合高温烧结两步法制备了具有SiC阵列改性涂层的新型SiC/Cf复合材料。采用不同手段表征SiC/Cf复合材料的相组成、微观结构和吸波特性。结果表明: 碳纤维表面包覆大量结合紧密、垂直表面向外生长的SiC阵列, 且阵列分布均匀, 高度约为1.4 μm。当SiC/Cf复合材料厚度在1~2 mm范围内时, 随厚度增加, 最小反射损耗(RLmin)由高频向低频移动; 当厚度为1.8 mm时, 在8.31 GHz下的RLmin为-40.653 dB, 有效吸收带宽为1.11 GHz(RL < -10 dB); 当厚度为1.5 mm时, 有效吸收带宽可达2.42 GHz, 且厚度为1.3~1.8 mm时, RLmin均小于-20 dB。SiC阵列改性碳纤维新型SiC/Cf复合材料有望成为一种轻质高效的电磁波吸收材料。
|
|
坩埚下降法生长SnSe单晶及其力学性能研究
金敏, 白旭东, 赵素, 张如林, 陈玉奇, 周丽娜
2021 Vol. 36 (3): 313318
摘要(
551 )
HTML(
15)
PDF(1244KB)(
920
)
Ⅳ-Ⅵ SnSe单晶是一种引人注目的热电材料, 不仅热电性能优异而且还具有环境友好的特征。本工作探索了一种制备SnSe单晶的技术, 并对产品的力学性能进行研究。利用坩埚下降法成功生长了化学计量比准确的非掺杂SnSe单晶, 其在室温下具有标准Pnma正交相结构。由于Sn层与Se层之间的结合力非常弱, SnSe单晶很容易沿(100)面解理。显微压痕测试表明SnSe单晶十分柔软, 0.01~0.05 kg载荷下的平均显微维氏硬度HV仅为53 MPa。然而, 得益于层内Sn和Se原子之间强烈的极性耦合, SnSe单晶沿(100)面却展现出了优异的断裂韧性。纳米划痕实验显示SnSe单晶(100)面在5~300 mN划痕压力范围内的摩擦系数COF可从0.09增加到0.8。本工作对完善SnSe单晶的力学性能信息具有重要意义。
|
|
Co掺杂GaFeO3陶瓷的结构, 导电及磁性能研究
夏朝阳, 王慧, 方婧红, 张阳, 汪超越, 贺欢, 倪津崎, 石云, 李勤, 余建定
2021 Vol. 36 (3): 319324
摘要(
481 )
HTML(
12)
PDF(1464KB)(
943
)
GaFeO3因其磁电耦合效应成为目前极具潜质的多铁性材料之一。本工作采用固相烧结法制备了不同钴掺杂浓度的铁酸镓陶瓷, 并研究了钴的掺杂浓度对铁酸镓陶瓷的相组成, 微观结构形貌, 漏电流及磁性的影响。XRD及Rietveld精修结果显示除了主相GaFeO3, 还存在第二相, 且随着钴含量的增加, 第二相含量逐渐增加, 晶体的畸变程度增大; 因为掺入二价阳离子Co 2+并引入了第二相, 样品的漏电性能和纯GaFeO3陶瓷相比显著改善; 当钴掺杂浓度为2at%时, 样品的漏电流密度相较于GaFeO3降低了7个数量级; 掺入Co 2+引入第二相且晶格畸变程度增加使得GaFeO3的磁性增强。研究结果表明: 铁酸镓中掺杂微量的钴可以改善磁性, 并使漏电流大幅降低而磁转变温度无明显下降。
|
|
界面电荷快速转移提升铜修饰氧化钨光催化性能
熊金艳, 罗强, 赵凯, 张梦梦, 韩朝, 程刚
2021 Vol. 36 (3): 325331
摘要(
538 )
HTML(
29)
PDF(4305KB)(
1005
)
非贵金属修饰可以有效增强单一半导体的光生电荷分离, 进而改善光催化活性。采用一种简单的抗坏血酸室温还原法制备了WO3-Cu复合光催化材料, 并用不同表征手段对其组成和结构进行了表征。结果显示, Cu颗粒沉积在WO3纳米立方的表面, 在模拟太阳光照射下, 与WO3相比, WO3-Cu复合材料具有良好的光催化降解刚果红的能力。活性物种捕捉实验以及顺磁共振结果表明, 光诱导产生的空穴、羟基自由基、超氧自由基阴离子等活性物种在刚果红降解过程中起主要作用。根据光电化学测试结果, WO3在光催化过程中产生的电子快速转移向Cu颗粒, 可以有效分离光生电子-空穴对并加快光生载流子迁移, 进而有利于光催化反应的发生, 从而使WO3表现出较高的光催化活性。
|
|
固态锂电池用MOF/聚氧化乙烯复合聚合物电解质
梁凤青, 温兆银
2021 Vol. 36 (3): 332336
摘要(
1361 )
HTML(
80)
PDF(2197KB)(
1604
)
固态聚合物电解质具有柔韧性好和易于加工的优势, 可制备各种形状的固态锂电池, 杜绝漏液问题。但固态聚合物电解质存在离子电导率低以及对锂金属负极不稳定等问题。本研究以纳米金属-有机框架材料UiO-66为聚合物电解质的填料, 用于改善电解质的性能。UiO-66与聚氧化乙烯(poly(ethylene oxide), PEO)链上醚基的氧原子的配位作用以及与锂盐中阴离子的相互作用, 可显著提高聚合物电解质的离子电导率(25 ℃, 3.0×10 -5S/cm; 60 ℃, 5.8×10 -4 S/cm), 并将锂离子迁移数提高至0.36, 电化学窗口拓宽至4.9 V。此外, 制备的PEO基固态电解质对金属锂具有良好的稳定性, 对称电池在60 ℃、0.15 mA·cm -2电流密度下可稳定循环1000 h, 锂电池的电化学性能得到显著改善。
|
|