无机材料学报 ›› 2019, Vol. 34 ›› Issue (11): 1167-1174.DOI: 10.15541/jim20180540 CSTR: 32189.14.10.15541/jim20180540
邹爱华,周贤良,康志兵,饶有海,吴开阳
收稿日期:
2018-11-12
修回日期:
2019-03-08
出版日期:
2019-11-20
网络出版日期:
2019-05-29
作者简介:
邹爱华(1980-), 女, 博士, 副教授. E-mail: aihua553030@163.com
基金资助:
ZOU Ai-Hua,ZHOU Xian-Liang,KANG Zhi-Bing,RAO You-Hai,WU Kai-Yang
Received:
2018-11-12
Revised:
2019-03-08
Published:
2019-11-20
Online:
2019-05-29
Supported by:
摘要:
采用基于密度泛函理论的第一性原理及实验相结合的方法, 探讨了Al基体中分别掺杂Mg、Si、Cu合金元素对SiC/Al界面结合的影响, 重点考察了合金元素在界面偏聚时的电子结构和成键情况。研究表明: 在未掺杂Al/SiC体系界面结构优化时, 以Si原子为终止面的Brigde结构是最稳定的结合方式; 当合金元素分别替换界面处的Al原子后, 界面处原子的分波态密度、Muliken电荷及成键原子集居数等电子结构参数均有不同程度的变化, 这不仅增加了界面处 Si与Al原子结合, 同时也增强了界面处和亚界面处的Al基体和SiC增强相原子之间的相互作用, 使体系更加稳定, 界面黏着功均有不同提升; 其中掺Mg提升效果最明显, 其次为掺Cu和掺Si; 利用第一性原理计算的掺杂Al/SiC体系黏着功和实验值较为接近且变化规律相同。
中图分类号:
邹爱华, 周贤良, 康志兵, 饶有海, 吴开阳. 基体合金元素对SiC/Al界面结合影响的第一性原理及实验研究[J]. 无机材料学报, 2019, 34(11): 1167-1174.
ZOU Ai-Hua, ZHOU Xian-Liang, KANG Zhi-Bing, RAO You-Hai, WU Kai-Yang. Alloy Elements on SiC/Al Interface: a First-principle and Experimental Study[J]. Journal of Inorganic Materials, 2019, 34(11): 1167-1174.
Size | Purity/wt% | Relative density/% | Roughness /nm |
---|---|---|---|
Φ20 mm×5 mm | >98.5 | >97 | 19 |
表1 SiC基板的基本参数
Table 1 Basic parameters of SiC substrate
Size | Purity/wt% | Relative density/% | Roughness /nm |
---|---|---|---|
Φ20 mm×5 mm | >98.5 | >97 | 19 |
Alsurf | (100) | (110) | (111) | (211) | SiCsurf | (001) | (011) | (111) | (211) |
---|---|---|---|---|---|---|---|---|---|
Esurf /(J·m-2) | 1.51 | 1.78 | 1.45 | 1.75 | Esurf/(J·m-2) | 5.42 | 5.96 | 6.49 | 8.41 |
表2 Al以及4H-SiC晶体表面的表面能
Table 2 Surface energy of Al and 4H-SiC crystal
Alsurf | (100) | (110) | (111) | (211) | SiCsurf | (001) | (011) | (111) | (211) |
---|---|---|---|---|---|---|---|---|---|
Esurf /(J·m-2) | 1.51 | 1.78 | 1.45 | 1.75 | Esurf/(J·m-2) | 5.42 | 5.96 | 6.49 | 8.41 |
图1 以Si为终端的SiC(001)/Al(111)界面原子结构, A、B、C位分别记作桥位、顶位和空位
Fig. 1 Atomic structures of SiC (001) /Al (111) interfaces with Si-terminated, A, B and C sites as bridge, top and vacancy, respectively
图2 SiC(001)表面能随$\mu _{\text{Si}}^{\text{slab}}-\mu _{\text{Si}}^{\text{bulk}}$变化的关系图
Fig. 2 Surface energy curves of SiC(001) with different $\mu _{\text{Si}}^{\text{slab}}-\mu _{\text{Si}}^{\text{bulk}}$
图3 SiC(001)/Al(111)界面分离功与界面距离的关系曲线
Fig. 3 Adhesion work curves of SiC(001)/Al(111) with different interfacial distance (a) C-terminated, (b) Si-terminated
Model | Add number | Total energy/eV | Wad/(mJ·m-2) |
---|---|---|---|
Al/SiC | 0 | -6573.7404 | 851 |
Al-Mg/SiC | 1 | -7491.2968 | 1140 |
2 | -8408.7099 | 1342 | |
4 | -10243.2359 | 1015 | |
Al-Si/SiC | 1 | -6624.1431 | 1024 |
2 | -6674.512 | 1242 | |
4 | -6775.2566 | 936 | |
Al-Cu/SiC | 1 | -7993.8884 | 1088 |
2 | -9413.8768 | 1254 | |
4 | -12254.1254 | 642 |
表3 合金原子(Mg、Si、Cu)掺杂前后SiC/Al界面粘着功的变化
Table 3 Adhesion work of SiC/Al interface before and after doping Mg, Si and Cu
Model | Add number | Total energy/eV | Wad/(mJ·m-2) |
---|---|---|---|
Al/SiC | 0 | -6573.7404 | 851 |
Al-Mg/SiC | 1 | -7491.2968 | 1140 |
2 | -8408.7099 | 1342 | |
4 | -10243.2359 | 1015 | |
Al-Si/SiC | 1 | -6624.1431 | 1024 |
2 | -6674.512 | 1242 | |
4 | -6775.2566 | 936 | |
Al-Cu/SiC | 1 | -7993.8884 | 1088 |
2 | -9413.8768 | 1254 | |
4 | -12254.1254 | 642 |
Atom number | Model | Charge population | |||
---|---|---|---|---|---|
s(Mg,Si,Cu) | p(Mg,Si,Cu) | d(Si, Cu) | Total(Mg, Si, Cu) | ||
Al(1) | Without Mg,Si,Cu | 1.11,1.11,1.11 | 1.76,1.76,1.76 | 0, 0 | 2.87, 2.87, 2.87 |
With Mg,Si,Cu | 1.15,1.14,1.14 | 1.84,1.74,1.75 | 0, 0 | 2.99, 2.88, 2.89 | |
Al(2)/(Mg,Si,Cu) | Without Mg,Si,Cu | 1.11,1.11,1.11 | 1.76,1.76,1.76 | 0, 0 | 2.87, 2.87, 2.87 |
With Mg,Si,Cu | 0.52,1.58,0.68 | 6.54, 2.5, 0.84 | 0, 9.76 | 7.07, 4.08, 9.76 | |
Al(4) | Without Mg,Si,Cu | 1.11,1.11,1.11 | 1.76,1.76,1.76 | 0, 0 | 2.87, 2.87, 2.87 |
With Mg,Si,Cu | 1.14,1.12,1.11 | 1.85,1.8,1.83 | 0, 0 | 2.99, 2.92, 2.94 | |
Si(2) | Without Mg,Si,Cu | 1.39,1.39,1.39 | 2.5, 2.5, 2.5 | 0, 0 | 3.98, 3.98, 3.98 |
With Mg,Si,Cu | 1.5,1.42,1.45 | 2.54, 2.56, 2.54 | 0, 0 | 4.04, 3.98, 3.99 | |
Si(4) | Without Mg,Si,Cu | 1.39,1.39,1.39 | 2.5, 2.5, 2.5 | 0, 0 | 3.89, 3.89, 3.89 |
With Mg,Si,Cu | 1.4,1.4,1.39 | 2.55, 2.5, 2.53 | 0, 0 | 3.95, 3.9, 3.92 |
表4 合金原子(Mg、Si、Cu)掺杂前后SiC/Al界面处原子Millken电荷
Table 4 Millken charge of atom at SiC/Al interface before and after doping Mg, Si and Cu
Atom number | Model | Charge population | |||
---|---|---|---|---|---|
s(Mg,Si,Cu) | p(Mg,Si,Cu) | d(Si, Cu) | Total(Mg, Si, Cu) | ||
Al(1) | Without Mg,Si,Cu | 1.11,1.11,1.11 | 1.76,1.76,1.76 | 0, 0 | 2.87, 2.87, 2.87 |
With Mg,Si,Cu | 1.15,1.14,1.14 | 1.84,1.74,1.75 | 0, 0 | 2.99, 2.88, 2.89 | |
Al(2)/(Mg,Si,Cu) | Without Mg,Si,Cu | 1.11,1.11,1.11 | 1.76,1.76,1.76 | 0, 0 | 2.87, 2.87, 2.87 |
With Mg,Si,Cu | 0.52,1.58,0.68 | 6.54, 2.5, 0.84 | 0, 9.76 | 7.07, 4.08, 9.76 | |
Al(4) | Without Mg,Si,Cu | 1.11,1.11,1.11 | 1.76,1.76,1.76 | 0, 0 | 2.87, 2.87, 2.87 |
With Mg,Si,Cu | 1.14,1.12,1.11 | 1.85,1.8,1.83 | 0, 0 | 2.99, 2.92, 2.94 | |
Si(2) | Without Mg,Si,Cu | 1.39,1.39,1.39 | 2.5, 2.5, 2.5 | 0, 0 | 3.98, 3.98, 3.98 |
With Mg,Si,Cu | 1.5,1.42,1.45 | 2.54, 2.56, 2.54 | 0, 0 | 4.04, 3.98, 3.99 | |
Si(4) | Without Mg,Si,Cu | 1.39,1.39,1.39 | 2.5, 2.5, 2.5 | 0, 0 | 3.89, 3.89, 3.89 |
With Mg,Si,Cu | 1.4,1.4,1.39 | 2.55, 2.5, 2.53 | 0, 0 | 3.95, 3.9, 3.92 |
Bond type | Population | |||||
---|---|---|---|---|---|---|
Without Mg | With Mg | Without Si | With Si | Without Cu | With Cu | |
Al(1)-Si(1) | 0.36 | 0.4 | 0.36 | 0.37 | 0.36 | 0.38 |
Al(2)/(Mg,Si,Cu)-Si(2) | 0.36 | 0.35 | 0.36 | 0.28 | 0.36 | 0.31 |
Al(3)-Si(3) | 0.36 | 0.39 | 0.36 | 0.34 | 0.36 | 0.37 |
Al(4)-Si(4) | 0.36 | 0.4 | 0.36 | 0.36 | 0.36 | 0.37 |
Al(4)-Al(5) | 0.24 | 0.25 | 0.24 | 0.23 | 0.24 | 0.25 |
Si(4)-C(4) | 0.24 | 0.25 | 0.23 | 0.23 | 0.24 | 0.26 |
表5 合金原子(Mg、Si、Cu)掺杂前后SiC/Al界面及附近成键原子集居数
Table 5 Populations of atoms at and near SiC/Al interface before and after doping Mg, Si and Cu
Bond type | Population | |||||
---|---|---|---|---|---|---|
Without Mg | With Mg | Without Si | With Si | Without Cu | With Cu | |
Al(1)-Si(1) | 0.36 | 0.4 | 0.36 | 0.37 | 0.36 | 0.38 |
Al(2)/(Mg,Si,Cu)-Si(2) | 0.36 | 0.35 | 0.36 | 0.28 | 0.36 | 0.31 |
Al(3)-Si(3) | 0.36 | 0.39 | 0.36 | 0.34 | 0.36 | 0.37 |
Al(4)-Si(4) | 0.36 | 0.4 | 0.36 | 0.36 | 0.36 | 0.37 |
Al(4)-Al(5) | 0.24 | 0.25 | 0.24 | 0.23 | 0.24 | 0.25 |
Si(4)-C(4) | 0.24 | 0.25 | 0.23 | 0.23 | 0.24 | 0.26 |
图6 900 ℃时纯Al及其合金(Al-Mg、Si、Cu)在α-SiC基板上接触角随时间的变化
Fig. 6 Contact angle of pure Al and its alloy (Al-Mg, Si, Cu) on α-SiC substrate at 900 ℃ varies with time
Model | This experiment/ (mJ·m-2) | First principles/ (mJ·m-2) |
---|---|---|
SiC/Al | 839 | 851 |
SiC/Al-Mg | 1246 | 1140 |
SiC/Al-Si | 1167 | 1024 |
SiC/Al-Cu | 1220 | 1088 |
表6 不同体系界面黏着功
Table 6 Adhesion work of different interface systems
Model | This experiment/ (mJ·m-2) | First principles/ (mJ·m-2) |
---|---|---|
SiC/Al | 839 | 851 |
SiC/Al-Mg | 1246 | 1140 |
SiC/Al-Si | 1167 | 1024 |
SiC/Al-Cu | 1220 | 1088 |
[1] | SONG M, HE Y H . Effects of die-pressing pressure andextrusion on the microstructures and mechanical properties of SiC reinforced pure aluminium composites. Mater. Design, 2010,31(2):985-989. |
[2] | FOX R T, NEWMAN R A, PYZIK A J , et al. Al2O3-B4C-Al composite material system via pressure less infiltration methods. Int. J. Appl. Ceram. Technol., 2010,7(6):837-845. |
[3] | LEE H S, JEON K Y, KIM H Y , et al. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications. J. Mater. Sci., 2000,35(24):6231-6236. |
[4] | LI C Y, HU Y K, ZHENG X J , et al. Study of microstructure of SiCp/ZL101A composites by vacuum hot-pressing sintering processing. Rare Metal Mater. Eng., 2014,41(2):413-416. |
[5] | HE P, HUANG S Y, WANG H C , et al. Electroless nickel -phosphorus plating on silicon carbide particles for metal matrix composites. Ceram. Int., 2014,40(10):16653-16664. |
[6] | BHUSHAN R K, KUMAR S, DAS S . Optimisation of porosity of 7075 Al alloy 10% SiC composite produced by stir casting process through Taguchi method. Int. J. Mater. Eng. Innov., 2009,1(1):116-129. |
[7] | MANDALl D, VISWANATHAN S . Effect of re-melting on particles distribution and interface formation in SiC reinforced 2124Al matric composite. Mater. Charact., 2013,86:21-27. |
[8] | RATNAPARKHI P L, HOWE J M . Characterization of a diffusion- bonded Al-Mg alloy/SiC interface by high resolution and analytical electron microscopy. Metall. Mater. Trans. A, 1994,25(3):617-627. |
[9] | LUO Z P . Crystallography of SiC/MgAl2O4/Al interfaces in a pre-oxidizied SiC reinforced SiC/Al composite. Acta Mater., 2006,54(1):47-58. |
[10] | MANDALl D, VISWANATHAN S . Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite. Mater. Charact., 2013,85:73-81. |
[11] | AGUILAR-MARTÍNEZ J A, PECH-CANUL M I, RODRÍGUEZ- REYES M , et al. Effect of Mg and SiC type on the processing of two-layer Al/SiCp composites by pressureless infiltration. J. Mater. Sci., 2004,39(3):1025-1028. |
[12] | EUSTATHOPOULOS N, LAURENT V, RADO C . Wetting kinetics and bonding of Al and Al alloys on α-SiC. Mater. Sci. Eng. A, 1996,205(1/2):1-8. |
[13] | KOBASHI M, CHOH T . The wettability and the reaction for SiC particlce/Al alloy system. J. Mater. Sci., 1993,28(3):684-690. |
[14] | FERRO A C, DERBY B . Wetting behavior in the Al-Si/SiC system: interface reactions and solubility effects. Acta Mater., 1995,43(8):3061-3073. |
[15] | MA X C, WU J B . An investigation on wettability and interfacial phenomena of Al-SiC system. J. Mater. Sci. Eng., 1994,12(1):37-41. |
[16] | ZHANG Q, JIA L T, WU G H . Fabrication of oxidized SiC particles reinforced aluminum matrix composite by pressureless infiltration technique. J. Inorg. Mater., 2012,27(4):353-357. |
[17] | LIU J Y, LIU Y C, LIU G Q , et al. Oxidation behavior of silicon carbide particales and their interfacial characterization in aluminum matrix composites. Chin. J. Nonferrous Met., 2002,12(5):961-966. |
[18] | ZHANG D, SHEN P, SHI L X . Wetting and evaporation behaviors of molten Mg on partially oxidized SiC substrates. Appl. Surf. Sci., 2010,256(23):7043-7047. |
[19] | JONES R O, GUNNARSSON O . Density-functional formalism: sources of error in local-density applications. Phys. Rev. Lett., 1989,61(3):689-746. |
[20] | HONG T, SIMTH J R, SROLOVITZ D J . Theory of meta-ceramic adhesion. Acta Metall. Mater., 1995,43(7):2721-2730. |
[21] | HAYES R L, ORTIZ M, CARTER E A . Universal binding-energy relation for crystals that accounts for surface relaxation. Phys. Rev. B, 2004,69(17):1324-1332. |
[22] | SHI L X, SHEN P, ZHANG D, JIANG Q C . Wetting and evaporation behaviors of molten Mg-Al alloy drops on partially oxidized α-SiC substrates. Mater Z. Chem. Phys., 2011,130(3):1125-1133. |
[23] | SAIZ E, CANNON R M, TOMSIA A P . Reactive spreading in ceramic/metal systems. Oil Gas Sci. Technol., 2001,56(1):89-96. |
[24] | HOEKSTRA J, KOHYAMA M . Ab initio calculations of the β-SiC(001)/Al interface. Phys. Rev. B, 1998,57(4):2334-2341. |
[25] | WINKLER B, PICKARD C J, SEGALL M D , et al. Density- functional study of charge disordering in Cs2Au(I)Au(Ⅲ)Cl6 under pressure. Phys. Rev. B, 2001,63(21):214103-214106. |
[26] | LIU Y M, SHI J Y, LU Q Q , et al. Research progress of solid surface energy calculation based on Young's equation. Mater. Rev., 2013,23(11):123-129. |
[27] | CANDAN E, ATKINSON H V, TUREN Y , et al. Wettability of aluminum-magnesium alloys on silicon carbide substrates. J. Am. Ceram. Soc., 2011,94(3):867-874. |
[1] | 吴玉豪, 彭仁赐, 程春玉, 杨丽, 周益春. HfxTa1-xC体系力学性能及熔化曲线的第一性原理研究[J]. 无机材料学报, 2024, 39(7): 761-768. |
[2] | 靳宇翔, 宋二红, 朱永福. 3d过渡金属单原子掺杂石墨烯缺陷电催化还原CO2的第一性原理研究[J]. 无机材料学报, 2024, 39(7): 845-852. |
[3] | 王伟华, 张磊宁, 丁峰, 代兵, 韩杰才, 朱嘉琦, 贾怡, 杨宇. 铱衬底上金刚石外延形核与生长: 第一性原理计算[J]. 无机材料学报, 2024, 39(4): 416-422. |
[4] | 张宇晨, 陆知遥, 赫晓东, 宋广平, 朱春城, 郑永挺, 柏跃磊. 硫族MAX相硼化物的物相稳定性和性能预测[J]. 无机材料学报, 2024, 39(2): 225-232. |
[5] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[6] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[7] | 吴晓维, 张涵, 曾彪, 明辰, 孙宜阳. 杂化泛函HSE和PBE0计算CsPbI3缺陷性质的比较研究[J]. 无机材料学报, 2023, 38(9): 1110-1116. |
[8] | 张守超, 陈洪雨, 刘洪飞, 杨羽, 李欣, 刘德峰. 6H-SiC中子辐照肿胀高温回复及光学特性研究[J]. 无机材料学报, 2023, 38(6): 678-686. |
[9] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[10] | 华思恒, 杨东旺, 唐昊, 袁雄, 展若雨, 徐卓明, 吕嘉南, 肖娅妮, 鄢永高, 唐新峰. n型Bi2Te3基材料表面处理对热电单元性能的影响[J]. 无机材料学报, 2023, 38(2): 163-169. |
[11] | 文志勤, 黄彬荣, 卢涛仪, 邹正光. 压力对PbTiO3结构和热物性质影响的第一性原理研究[J]. 无机材料学报, 2022, 37(7): 787-794. |
[12] | 孙铭, 邵溥真, 孙凯, 黄建华, 张强, 修子扬, 肖海英, 武高辉. RGO/Al复合材料界面性质第一性原理研究[J]. 无机材料学报, 2022, 37(6): 651-659. |
[13] | 肖美霞, 李苗苗, 宋二红, 宋海洋, 李钊, 毕佳颖. 表面端基卤化Ti3C2 MXene应用于锂离子电池高容量电极材料的研究[J]. 无机材料学报, 2022, 37(6): 660-668. |
[14] | 袁罡, 马新国, 贺华, 邓水全, 段汪洋, 程正旺, 邹维. 平面应变对二维单层MoSi2N4能带结构和光电性质的影响[J]. 无机材料学报, 2022, 37(5): 527-533. |
[15] | 冯清影, 刘东, 张莹, 冯浩, 李强. 太阳能驱动的两步热化学循环二氧化碳裂解反应活性材料的热力学与第一性原理评价[J]. 无机材料学报, 2022, 37(2): 223-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||