[1] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22(3): 587–603.[2] Jeffrey W F. Ceramic and polymeric solid electrolytes for lithium- ion batteries. J. Power Sour. 2010, 195(15): 4554–4569.[3] Philippe K. Inorganic solid Li ion conductors: An overview. Solid State Ionics, 2009, 180(14/15/16): 911–916.[4] Tatsumisago M, Mizuno F, Hayashi A. All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes. J. Power Source, 2006, 159(1): 193–199.[5] Thangadurai V, Kaack H, Weppner W. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc., 2003, 86(3): 437–440.[6] Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed., 2007, 46(41): 7778–7781.[7] Ohta S, Kobayashi T, Asaoka T. High lithium ionic conductivity in the garnet-type oxide Li7?xLa3(Zr2?x,Nbx)O12(x = 0 – 2). J. Power Source, 2011, 196(6): 3342–3345.[8] Kumazaki S, Iriyama Y, Kim K, et al. High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. Electrochem. Commun., 2011, 13(5): 509–512.[9] Jin Y, McGinn P J. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J. Power Source, 2011, 196(20): 8683–8687.[10] Allena J L, Wolfenstinea J, Rangasamyb E, et al. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power Source, 2012, 206: 315–319.[11] Huang M, Dumon A, Nan C. Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12. Electrochem. Commun., 2012, 21: 62–64.[12] Murugan R, Ramakumar S, Janani N. High conductive yttrium doped Li7La3Zr 2O12 cubic lithium garnet. Electrochem. Commun., 2011, 13(12): 1373–1375.[13] Chantikul P, Bennison S J, Lawn B R. Role of grain size in the strength and R-curve properties of alumina. J. Am. Ceram. Soc., 1990, 73(8): 2419–2427. [14] Fu J, Zuo R Z, Wang X H, et al. Polymorphic phase transition and enhanced piezoelectric properties of LiTaO3-modified (Na0.52K0.48)(Nb0.93Sb0.07)O3 lead-free ceramics. J. Phys. D: Appl. Phys., 2009, 42(1): 012006–1–4.[15] Ming B Q, Wang J F, Zang G Z, et al. Piezoelectric properties of (Li, Sb, Ta) modified (Na,K)NbO3 lead-free ceramics. J. Appl. Phys., 2007, 101(5): 054103–1–4.[16] Ramakumar S, Satyanarayana L, Manorama S V, et al. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O fast lithium ion conductors. Phys. Chem. Chem. Phys., 2013, 15: 11327– 11338.[17] Geiger C A, Alekseev E, Lazic B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg. Chem., 2011, 50(3): 1089–1097. [18] Mei A, Wang X, Lan J, et al. Role of amorphous boundary layer in enhancing ionic conductivity of lithium-lanthanum-titanate electrolyte. Electrochim. Acta, 2010, 55(8): 2958–2963. [19] Sata N, Eberman K, Eberl K, et al. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature, 2000, 408: 946–949.[20] Thangadurai V, Weppner W. Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12. J. Solid State Chem., 2006, 179(4): 974–984.[21] Li Y T, Wang C A, Xie H, et al. High lithium ion conduction in garnet-type Li6La3ZrTaO12. Electrochem. Commun., 2011, 13(12): 1289–1292.[22] Thangadurai V, Weppner W. Li6ALa2Nb2O12 (A = Ca, Sr, Ba): a new class of fast lithium ion conductors with garnet-like structure. J. Am. Ceram. Soc., 2005, 88(2): 411–418. |