无机材料学报 ›› 2014, Vol. 29 ›› Issue (1): 13-22.DOI: 10.3724/SP.J.1077.2014.10002 CSTR: 32189.14.SP.J.1077.2014.10002
王 轲1, 沈宗洋1,2, 张波萍3, 李敬锋1
收稿日期:
2013-10-22
修回日期:
2013-10-30
出版日期:
2014-01-20
网络出版日期:
2013-12-09
基金资助:
国家自然科学基金青年及重点项目(51332002, 51302144); 江西省教育厅科技落地计划(KJLD13076)
WANG Ke1, SHEN Zong-Yang1,2, ZHANG Bo-Ping3, LI Jing-Feng1
Received:
2013-10-22
Revised:
2013-10-30
Published:
2014-01-20
Online:
2013-12-09
Supported by:
National Natural Science Foundation of China (51332002, 51302144); Ground Plan of Science and Technolagy in Jiangxi Province department of Education (KJLD13076)
摘要: 近十年来, 铌酸钾钠(KNN)基无铅压电陶瓷一直是国内外的研究热点。基于笔者的研究工作, 本文从晶体结构、性能优化、制备工艺三个方面总结了KNN陶瓷的发展现状, 并进而尝试分析了该体系在未来发展中面临的机遇与挑战。
中图分类号:
王 轲, 沈宗洋, 张波萍, 李敬锋. 铌酸钾钠基无铅压电陶瓷的现状、机遇与挑战[J]. 无机材料学报, 2014, 29(1): 13-22.
WANG Ke, SHEN Zong-Yang, ZHANG Bo-Ping, LI Jing-Feng. (K, Na)NbO3-based Lead-free Piezoceramics: Status, Prospects and Challenges[J]. Journal of Inorganic Materials, 2014, 29(1): 13-22.
[1] Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. Academic Press: New York, 1971. [2] Xiao D G. Environmentally conscious ferroelectries research. J. Korean Phys. Soc., 1998, 32(S): S1798?S1800. [3] Ge W , Cao H, Li J, et al. Influence of dc-bias on phase stability in Mn-doped Na0.5Bi0.5TiO3-5.6at%BaTiO3 single crystals. Appl. Phys. Lett., 2009, 95(16): 162903–1–3. [4] Wang K, Li J F. Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Funct. Mater., 2010, 20(12): 1924–1929 . [5] Wang K, Yao F Z, Jo W, et al. Temperature-insensitive (K, Na) NbO3-based lead-free piezo actuator ceramics. Adv. Funct. Mater., 2013, 23: 4079–4086. [6] Wang K, Li J F. Analysis of crystallographic evolution in (Na, K) NbO3-based lead-free piezoceramics by X-ray diffraction, Appl. Phys. Lett., 2007, 91(26) : 262902–1–3. [7] Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3ceramics. Appl. Phys. Lett., 2007, 90(26)?: 262903–1–3. [8] Lu N, Yu R, Cheng Z Y, et al. Ferroelectric polarization and domain walls in orthorhombic (K1-xNax)NbO3 lead-free ferroelectric ceramics. Appl. Phys. Lett., 2010, 96(22)?: 221905–1–3. [9] Xiao D Q, Wu J G, Wu L, et al. Investigation on the composition design and properties study ofperovskite lead-free piezoelectric ceramics. J. Mater. Sci., 2009, 44(19): 5408–5419. [10] Wang L Y, Ren W, Shi P, et al. Enhanced ferroelectric properties in Mn-doped K0.5Na0.5NbO3 thin films derived from chemical solution deposition. Appl. Phys. Lett., 2010, 97(7): 072902–1–3. [11] Fu F, Shen B, Zhai J W, et al. Influence of Mn2+ on the electrical properties of textured KNN thick films. Ceram. Int., 2012, 38: S287–S290. [12] Gao Y, Zhang J L, Qing Y, et al. Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02-(Nb0.77Ta0.18Sb0.05)O3 ceramic. J. Am. Ceram. Soc., 2011, 94(9): 2968–2973. [13] Cheng H L, Du H L, Zhou W C, et al. Effects of LaFeO3?additions on the dielectric and ferroelectric properties of (K0.5Na0.5)NbO3 ceramics. Journal of Inorganic Materials, 2012, 27(11): 1228–1232. [14] Chu R G, Hao J G, Xu Z J, et al. Preparation and characterrization of (K0.5Na0.5)0.94-2xLi0.06SrxNb0.98Sb0.02O3?lead-free piezoelectric ceramics. Journal of Inorganic Materials, 2010, 25(11): 1164?1168. [15] Zuo R, Fu J. Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics. J. Am. Ceram. Soc.,2011, 94(5):1467–1470. [16] JIANG X P, HU X P, JIANG F L, et al. Li-modified sodium potassium tantalum niobate lead-free piezoelectric ceramics. Journal of Inorganic Materials, 2007, 22(3): 465–468. [17] LI Y M, XIAO Z G, SHEN Z Y, et al. Effect of BaZrO3?depend on the structure and electric properties of (K0.49Na0.51)0.98Li0.02- (Nb0.77Ta0.18Sb0.05)O3?lead-free piezoceramics. Journal of Inorganic Materials, 2013, 28(6): 629–634. [18] Fu J, Zuo R Z, Wang X H, et al. Polymorphic phase transition and enhanced piezoelectric properties of LiTaO3-modified (Na0.52K0.48)- (Nb0.93Sb0.07)O3 lead-free ceramics. J. Phys. D: Appl. Phys., 2009, 42(1): 012006–1–4. [19] Liu N, Wang K, Li J F, et al. Hydrothermal synthesis and spark plasma sintering of (K, Na)NbO3 lead-free piezoceramics. J. Am. Ceram. Soc., 2009, 92(8):1884–1887. [20] Zuo R Z, Xu Z K, Li L T. Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 lead-free ceramics. J. Phys. Chem. Solids., 2008, 69(7):1728–1732. [21] Zhu K J, Su L K, Ji H L, et al. Hydrothermal solvothermal synthesis of (K, Na) NbO3?lead-free piezoelectric ceramics and its properties. Journal of Inorganic Materials, 2010, 25(11): 1159–1163. [22] Smolenskii G A, Isupov V A, Agranovskaya A I, et al. New ferroelectrics of complex composition. Soviet Physics-Solid State,1961, 2(11): 2651–2654. [23] Takenaka T, Maruyama K, Sakata K. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys.,1991, 30(9B): 2236–2239. [24] Egerton L, Dillon D M. Piezoelectric and dielectric properties of ceramics in the system potassium sodium niobate. J. Am. Ceram. Soc.,1959, 42(9): 438–442. [25] Maeder M D, Damjanovic D, Setter N. Lead free piezoelectric materials. J. Electroceram., 2004 , 13(1/2/3):385–392. [26] Tennery V J, Hang K W. Thermal and X-Ray diffraction studies of NaNbO3-KNbO3 system. J. Appl. Phys., 1968, 39(10): 4749–4753. [27] Megaw H D. Crystal structure of double oxides of the perovskite type. P. Phys. Soc. Lond.,1946, 58(326): 133–152. [28] Dai Y J, Zhang X W, Chen K P. Morphotropic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramics. Appl. Phys. Lett.,2009, 94(4): 042905–1–3. [29] Damjanovic D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc., 2005, 88(10): 2663–2676. [30] Haun M J, Furman E, Jang S J, et al. Thermodynamic theory of the lead zirconate-titanate solid-solution system, 5. Theoretical Calculations. Ferroelectrics, 1989, 99: 63–86. [31] Haun M J, Zhuang Z Q, Furman E, et al. Thermodynamic theory of the lead zirconate-titanate solid-solution system, 3. Curie constant And 6th-order polarization interaction dielectric stiffness coefficients. Ferroelectrics,1989, 99: 45–54. [32] Damjanovic D, Demartin M. Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics. Journal of Physics-Condensed Matter, 1997, 9(23): 4943–4953. [33] Wu L, Zhang J L, Wang C L, et al. Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3 ceramics. J. Appl. Phys., 2008, 103(8): 084116–1–5. [34] Li J F, Wang K, Zhang B P, et al. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc., 2006, 89(2): 706–709. [35] Zhang B P, Li J F, Wang K, et al. Compositionaldependence of piezoelectric properties in NaxK1-xNbO3 lead-free ceramicsprepared by spark plasma sintering. J. Am. Ceram. Soc., 2006, 89(5): 1605–1609. [36] Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature, 2004, 432(4): 84–87. [37] Lin D, Kwok K W, Chan H L W. Microstructure, phase transition, and electrical properties of (K0.5Na0.5)1-xLix (Nb1-yTay)O3 lead-free piezoelectric ceramics. J. Appl. Phys., 2007, 102(3): 034102–1–7. [38] Wu J G, Xiaob D Q, Wang Y Y, et al. Effects of K/Na ratio on the phase structure and electrical properties of (KxNa0.96-xLi0.04)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Appl. Phys. Lett., 2007, 91(25): 252907–1–3. [39] Akdo?an E K, Kerman K, Abazari M, et al. Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett., 2008, 92(11): 112908–1–3. [40] Zhou J J, Wang K, Li F, et al. High and frequency-insensitive converse piezoelectric coefficient obtained in AgSbO3-modified (Li, K, Na)(Nb,Ta)O3 lead-free piezoceramics. J. Am. Ceram. Soc., 2013, 96(2): 519–523. [41] Li J F, Zhen Y H, Zhang B P, et al. Normal sintering of (K, Na)NbO3- based lead-free piezoelectric ceramics. Ceram. Int., 2008, 34(4): 783–786. [42] Zhou J J, Li J F, Zhang X W. Orthorhombic to tetragonal phase transition due to stress release in (Li,Ta)-doped(K,Na)NbO3 lead-free piezoceramics. J. Eur. Ceram. Soc., 2012, 32(2):267-270. [43] Guo Y P, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl. Phys. Lett., 2004, 85(18): 4121–4123. [44] Wada S, Yako K, Kakemoto H, et al. Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys., 2005, 98(1): 014109–1–7. [45] Sluka T, Tagantsev A K, Damjanovic D, et al. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nature Commun., 2012, 3: 748–1–7. [46] Zhen Y H, Li J F. Abnormalgrain growth and new core-shell structure in (K, Na)NbO3-based lead-free piezoelectric ceramics. J. Am. Ceram. Soc., 2007, 90(11): 3496–3502. [47] Li E, Kakemoto H, Wada S, et al. Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics. J. Am. Ceram. Soc., 2007, 90(6): 1787–1791. [48] Zuo R Z, R?del J, Chen R Z, et al. Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc., 2006, 89(6): 2010–2015. [49] Bernard J, Bencan A, Rojac T, et al. Low-temperature sintering of K0.5Na0.5NbO3 ceramics. J. Am. Ceram. Soc., 2008, 91(7): 2409–2411. [50] Matsubara M, Kikuta K, Hirano S. Piezoelectric properties of (K0.5Na0.5)(Nb1-xTax)O3-K5.4CuTa10O29 ceramics. J. Appl. Phys., 2005, 97(11)?:114105. [51] Park H Y, Ahn C W, Song H C, et al. Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics. Appl. Phys. Lett., 2006, 89(6): 062906–1–3. [52] Li Y M, Shen Z Y, Li R R, et al. Effect of BBS-based frit on the low temperature sintering and electrical properties of KNN lead-free piezoceramics. International Journal of Applied Ceramic Technology, 2013, 10(5): 866–872. [53] Wang K,Li J F. Low-temperature sintering of Li-modified (K,Na)NbO3 lead-free ceramics: sintering behavior, microstructure, and electrical properties. J. Am. Ceram. Soc., 2010, 93(4): 1101–1107. [54] Yao F Z, Wang K, Li J F. Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO3 lead-free piezoceramics. J. Appl. Phys., 2013, 113(17): 174105–1–7. [55] Shen Z Y, Wang K, Li J F. Combined effects of Li content and sintering temperature on polymorphic phase boundary and electrical properties of Li/Ta co-doped (Na, K)NbO3 lead-free piezoceramics. Appl. Phys. A, 2009, 97(4): 911–917. [56] Wang K, Li J F, Zhou J J. High normalized strain obtained in Li-modified (K, Na)NbO3 lead-free piezoceramics. Appl. Phys. Express,2011, 4(6): 061501–1–3. [57] Zhou J J, Li J F, Wang K, et al. Phase structure and electrical properties of (Li,Ta)-doped (K, Na)NbO3 lead-free piezoceramics in the vicinity of Na/K=50/50. J. Mater. Sci., 2011, 46(15): 5111–5116. [58] Cheng L Q, Zhou J J, Wang K, et al. Influence of ball milling on sintering behavior and electrical properties of (Li, Na, K)NbO3 lead-free piezoceramics. J. Mater. Sci., 2012, 47(19): 6908–6914. [59] Wang K, Li J F. (K, Na) NbO3-based lead-free piezoceramics: phase transition, sintering and property enhancement. Journal of Advanced Ceramics,2012, 1(1): 24–37. [60] Malic B, Bemard J, Bencan A, et al. Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics. J. Eur. Ceram. Soc., 2008, 28(6): 1191–1196. [61] Zhu F, Skidmore T A, Bell A J, et al. Diffuse dielectric behaviour in Na0.5K0.5NbO3-LiTaO3-BiScO3 lead-free ceramics, Mater. Chem. Phys., 2011, 129(1/2): 411–417. [62] Patterson E A, Cann D P. Piezoelectric properties and unipolar fatigue behavior of KNN-based Pb-free piezoceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2011, 58(9)?: 1835–1841. [63] Du H L, Liu D J, Tang F S, et al. Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead-free ceramics. J. Am. Ceram. Soc., 2007, 90(9): 2824–2829 . [64] Sun X Y, Chen J, Yu R B, et al. BiScO3 doped (Na0.5K0.5)NbO3 lead-Free piezoelectric ceramics. J. Am. Ceram. Soc., 2009, 92(1): 130–132. [65] Chang Y F, Yang Z P, Wei L L. Microstructure, density, and dielectric properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 piezoelectric ceramics. J. Am. Ceram. Soc., 2007, 90(5): 1656–1658. [66] Wang Y, Damjanovic D, Klein N, et al. Compositional inhomogeneity in Li- and Ta-modified (K, Na)NbO3 ceramics. J. Am. Ceram. Soc., 2007, 90(11): 3485–3489. [67] Yang Z P, Chang Y F, Wei L L. Phase transitional behavior and electrical properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 piezoelectric ceramics. Appl. Phys. Lett., 2007, 90(4): 042911–1–3. [68] Wang R P, Bando H, Itoh M. Universality in phase diagram of (K, Na)NbO3-MTiO3 solid solutions. Appl. Phys. Lett., 2009, 95(9): 092905–1–3. [69] Zuo R Z, Fu J, Lv D Y. Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48-xLix)(Nb1-x-ySbyTax)O3 system. J. Am. Ceram. Soc.,2009, 92(1): 283–285. [70] Shen Z Y, Zhen Y H, Wang K, et al. Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-Modified (Na, K)NbO3 ceramics. J. Am. Ceram. Soc., 2009, 92(8): 1748–1752. [71] Jaeger R E, Egerton L. Hot pressing of potassium-sodium niobates. J. Am. Ceram. Soc., 1962, 45(5): 209–213. [72] Wang R P, Xie R J, Sekiya T, et al. Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Mater. Res. Bull., 2004, 39(11): 1709–1715. [73] Wang K, Zhang B P, Li J F, et al. Lead-free Na0.5K0.5NbO3 piezoelectric ceramics fabricated by spark plasma sintering: Annealing effect on electrical properties. J. Electroceram., 2008, 21(1-4): 251–254. [74] Shen Z Y, Li J F, Wang K, et al. Electrical and mechanical properties of fine-grained Li/Ta-modified (Na,K)NbO3-based piezoceramics prepared by spark plasma sintering. J. Am. Ceram. Soc., 2010, 93(5): 1378–1383. [75] Zhen Y, Li J F, Wang K, et al. Spark plasma sintering of Li/Ta-modified (K, Na)NbO3 lead-free piezoelectric ceramics: Post-annealing temperature effect on phase structure, electrical properties and grain growth behavior, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2011, 176(14): 1110–1114. [76] Shen Z Y, Li J F, Chen R, et al. Microscale 1-3-Type (Na,K)NbO3- based Pb-free piezocomposites for high-frequency ultrasonic transducer applications. J. Am. Ceram. Soc., 2011, 94(5): 1346–1349. [77] Chang Y F, Poterala S F, Yang Z P, et al. < 001 > textured (K0.5Na0.5)Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Appl. Phys. Lett., 2009, 95(23): 232905–1–3. [78] Chang Y F, Poterala S F, Yang Z P, et al. Microstructure development and piezoelectric properties of highly textured CuO-doped KNN by templated grain growth. J. Mater. Res.,2010, 25(4): 687–694. [79] Chang Y, Poterala S, Yang Z, et al. Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3- based piezoelectric ceramics. J. Am. Ceram. Soc., 2011, 94(8): 2494–2498. [80] Yao J J, Li J F, Viehland D, et al. Aging associated domain evolution in the orthorhombic phase of < 001 > textured (K0.5Na0.5)Nb0.97Sb0.03O3 ceramics. Appl. Phys. Lett., 2012, 100: 132902–1–3. [81] Li Y L, Hui C, Wu M J, et al. Textured (K0.5Na0.5)NbO3 ceramics prepared by screen-printing multilayer grain growth technique. Ceram. Int., 2012, 38: S283–S286. [82] Lv D Y, Zuo R Z. Evolution of crystallographic grain orientation and anisotropic properties of (K0.5Na0.5)NbO3 ceramics using BaTiO3 templates by reactive templated grain growth. J. Alloys Compd., 2013, 560: 62–66. [83] Kawada S, Kimura M, Higuchi Y, et al. (K, Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes. Appl. Phys. Express, 2009, 2(11): 111401–1–3. [84] Kobayashi K, Doshida Y, Mizuno Y, et al. A route forwards to narrow the performance gap between PZT and lead-free piezoelectric ceramic with low oxygen partial pressure processed (Na0.5K0.5)NbO3. J. Am. Ceram. Soc., 2012, 95(9): 2928–2933. [85] Zhang S J, Xia R, Shrout T R, et al. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics. J. Appl. Phys., 2006, 100(10): 104–108. [86] Hollenstein E, Damjanovic D, Setter N. Temperature stability of the piezoelectric properties of Li-modified KNN ceramics. J. Eur. Ceram. Soc., 2007, 27(13/14/15): 4093–4097. [87] Morozov M I, Kungl H, Hoffmann M J. Effects of poling over the orthorhombic-tetragonal phase transition temperature in compositionally homogeneous (K, Na)NbO3-based ceramics. Appl. Phys. Lett., 2011, 98(13): 132908–1–3. [88] Zhang S J, Xia R, Shrout T R. Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl. Phys. Lett.,2007, 91(13): 132913–1–3. [89] Wu J G, Xiao D Q, Wang Y Y, et al. Improved temperature stability of CaTiO3-modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 lead- free piezoelectric ceramics. J. Appl. Phys., 2008, 104(2): 024102–1–4. [90] Zhao J B, Du H L, Qu S B, et al. Improvement in the piezoelectric temperature stability of (K0.5Na0.5)NbO3 ceramics. Chinese Sci. Bull., 2011, 56(22): 2389–2393. [91] Ge H, Hou Y T, Rao X, et al. The investigation of depoling mechanism of densified KNbO3 piezoelectric ceramic. Appl. Phys. Lett., 2011, 99(3): 032905–1–3. [92] Chang Y F, Yang Z P, Hou Y T, et al. Effects of Li content on the phase structure and electrical properties of lead-free (K0.46-x/2Na0.54-x/2Lix)(Nb0.76Ta0.20Sb0.04)O3 ceramics. Appl. Phys. Lett., 2007, 90(23): 232905–1–3. [93] Zhao P, Zhang B P, Li J F. High piezoelectric d33 coefficient in Li-modified lead-free (Na, K)NbO3 ceramics sintered at optimal temperature. Appl. Phys. Lett., 2007, 90(24): 242909–1–3. [94] Du H L, Zhou W C, Luo F, et al. An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics. Appl. Phys. Lett., 2007, 91(20): 202907–1–3. |
[1] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[2] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[3] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[4] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[5] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
[6] | 陈正鹏, 金芳军, 李明飞, 董江波, 许仁辞, 徐韩昭, 熊凯, 饶睦敏, 陈创庭, 李晓伟, 凌意瀚. 双钙钛矿Sr2CoFeO5+δ阴极材料的制备及其中温固体氧化物燃料电池性能研究[J]. 无机材料学报, 2024, 39(3): 337-344. |
[7] | 周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204. |
[8] | 厉佥元, 李纪伟, 张钰涵, 刘焱康, 孟阳, 储余, 朱一佳, 徐诺言, 朱亮, 张传香, 陶海军. PbTiO3修饰和极化处理提升钙钛矿太阳能电池性能[J]. 无机材料学报, 2024, 39(11): 1205-1211. |
[9] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[10] | 代晓栋, 张露伟, 钱奕成, 任智鑫, 曹焕奇, 印寿根. 锡铅混合钙钛矿太阳能电池垂直组分梯度的溶剂工程调控[J]. 无机材料学报, 2023, 38(9): 1089-1096. |
[11] | 董思吟, 帖舒婕, 袁瑞涵, 郑霄家. 低维卤化物钙钛矿直接型X射线探测器研究进展[J]. 无机材料学报, 2023, 38(9): 1017-1030. |
[12] | 王润, 相恒阳, 曾海波. 钙钛矿多色级联发光二极管中多中心载流子均衡分布调控研究[J]. 无机材料学报, 2023, 38(9): 1062-1068. |
[13] | 王马超, 唐扬敏, 邓明雪, 周真真, 刘小峰, 王家成, 刘茜. 共沉淀法制备Cs2Ag0.1Na0.9BiCl6:Tm3+双钙钛矿及其近红外发光性能[J]. 无机材料学报, 2023, 38(9): 1083-1088. |
[14] | 韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102. |
[15] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||