[1] Liu Y L, Hagen A, Barford R, et al. Microstructural studies on degradation of interface between LSM-YSZ cathode and YSZ electrolyte in SOFCs. Solid State Ionics, 2009, 180(23): 1298-1304.[2] Zhang Y X, Xia C R. A durability model for solid oxide fuel cell electrodes in thermal cycle processes. Journal of Power Sources, 2010, 195(19): 6611-6618.[3] Suzuki S, Uchida H, Watanabe M, et al. Interaction of samaria-doped ceria anode with highly dispersed Ni catalysts in a medium-temperature solid oxide fuel cell during long-term operation. Solid State Ionics, 2006, 177(3): 359-365.[4] Jiang Z Y, Xia C R, Zhao F, et al. La0.85Sr0.15MnO3-- infiltrated Y0.5Bi1.5O3 cathodes for intermediate-temperature solid oxide fuel cells. Electrochemical and Solid-State Letters, 2009, 12(6): B91-B93.[5] Song H S, Hyun S H, Kim J, et al. A nanocomposite material for highly durable solid oxide fuel cell cathodes. Journal of Materials Chemistry, 2008, 18(10): 1087-1092.[6] Satoa K, Kinoshita T, Abe H. Performance and durability of nanostructured (La0.85Sr0.15)0.98MnO3/yttria-stabilized zirconia cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2010, 195(13): 4114-4118.[7] Zhao F, Peng R R, Xia C R. A La0.6Sr0.4CoO3---based electrode with high durability for intermediate temperature solid oxide fuel cells. Materials Research Bulletin, 2008, 43(2): 370-376.[8] Jiang Z Y, Xia C R, Chen F L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/ impregnation technique. Electrochimica Acta, 2010, 55(11): 3595-3605.[9] Wang Y, Zhang H, Xia C R, et al. Electrochemical characteristics of nano-structured PrBaCo2O5+x cathodes fabricated with ion impregnation process. Journal of Power Sources, 2012, 203: 34-41.[10] Zhang L, Liu Y Q, Xia C R, et al. Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles. Electrochem. Commun., 2011, 13(7): 711-713.[11] Zhang H, Zhao F, Xia C R. Nano-structured Sm0.5Sr0.5CoO3-δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics, 2010, 192(1): 591-594.[12] Jiang Z Y, Ding B, Xia C R, et al. Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones. International Journal of Hydrogen Energy, 2010, 35(15): 8322-8330.[13] Wu T Z, Rao Y Y, Peng R R, et al. Fabrication and evaluation of Ag-impregnated BaCe0.8Sm0.2O2.9 composite cathodes for proton conducting solid oxide fuel cells. Journal of Power Sources, 2010, 195(17): 5508-5513.[14] Liu Y, Mori M, Funahashi Y, et al. Development of micro-tubular SOFCs with an improved performance via nano-Ag impregnation for intermediate temperature operation. Electrochemistry Communications, 2007, 9(8): 1918-1923.[15] Zhao F, Zhang L, Xia C R, et al. A high performance intermediate-temperature solid oxide fuel cell using impregnated La0.6Sr0.4CoO3-- cathode. Journal of Alloys and Compounds, 2009, 487(1): 781-785.[16] Wu T Z, Peng R R, Xia C R. Nano-sized Sm0.5Sr0.5CoO3-- as the cathode for solid oxide fuel cells with proton-conducting electrolytes of BaCe0.8Sm0.2O2.9. Electrochimica Acta, 2009, 54(21): 4888-4892.[17] Jiang Z Y, Zhang L, Xia C R, et al. Nanoscale bismuth oxide impregnated (La,Sr)MnO3 cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2008, 185(1): 40-48.[18] Jiang S P, Wang W. Fabrication and performance of GDC -impregnated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells. Journal of the Electrochemical Society, 2005, 152(7): A1398-A1408.[19] Liang F L, Chen J, Jiang S P, et al. Development of nanostructured and palladium promoted (La, Sr)MnO3-based cathodes for intermediate- temperature SOFCs. Electrochem. Solid State Lett., 2008, 11(12): B213-B216.[20] Chen J, Liang F L, Chi B, et al. Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3-δ cathodes of solid oxide fuel cells. Journal of Power Sources, 2009, 194(1): 275-280.[21] Shah M, Barnett S A. Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3-δ into Gd-doped ceria. Solid State Ionics, 2008, 179(35): 2059-2064.[22] Armstrong T J, Rich J G Anode-supported solid oxide fuel cells with La0.6Sr0.4CoO3-δ-Zr0.84Y0.16O2-δ composite cathodes fabricated by an infiltration method. Journal. of the Electrochemical Society, 2006, 153(3): A515-A520.[23] Chen F L, Chen J, Cheng J L, et al. Novel nano-structured Pd+yttrium doped ZrO2 cathodes for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2008, 10(1): 42-46.[24] Ai N, Jiang S P, Lu Z, et al. Nanostructured (Ba,Sr)(Co,Fe)O3-- impregnated (La,Sr)MnO3 cathode for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 2010, 157(7): B1033-B1039.[25] Lu C, Sholklapper T Z, Jacobson C P, et al. LSM-YSZ cathodes with reaction-infiltrated nanoparticles. Journal of the Electrochemical Society, 2006, 153(6): A1115-A1119.[26] Jiang Z Y, Zhang L, Xia C R, et al. Bismuth oxide-coated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells with yttria-stabilized zirconia electrolytes. Electrochimica Acta, 2009, 54(11): 3059-3065.[27] Chen J, Liang F L, Jiang S P, et al. Nanostructured (La,Sr)(Co,Fe)O3+YSZ composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2008, 183(2): 586-589.[28] Burke J E. Transactions of the American Institute of Mining. Metallurgical and Petroleum Engineers, 1949, 180: 73-91.[29] Burke J E, Turnbull D. Recrystallization and grain growth. Progress in Metal Physics, 1952, 3: 220-224.[30] Rupp J L, Infortuna A, Gauckler L J. Microstrain and self-limited grain growth in nanocrystalline ceria ceramics. Acta Materialia, 2006, 54(7): 1721-1730.[31] Paramonov Y, Andersons J. A family of weakest link models for fiber strength distribution. Composites Part A: Applied Science and Manufacturing, 2007, 38(4): 1227-1233.[32] Ba-ant Z P. Probability distribution of energetic-statistical size effect in quasibrittle fracture. Probabilistic engineering mechanics, 2004, 19(4): 307-319.[33] Künga S R, Bidrawn F, Gorte R J, et al. Doped-ceria diffusion barriers prepared by infiltration for solid oxide fuel cells. Electrochemical and Solid-State Letters, 2010, 13(8): B87-B90.[34] Chen X, Yu J, Adler SB, et al. Thermal and chemical expansion of Sr-doped lanthanum cobalt oxide (La1-xSrxCoO3-δ). Chemistry of Materials, 2005, 17(17): 4537-4546.[35] Huang Y Y, Ahn K, Vohs J M, et al. Characterization of Sr-doped LaCoO3-YSZ composites prepared by impregnation methods. Journal of the Electrochemical Society, 2004, 151(10): A1592-A1597.[36] Peters C. Grain-size effects in nanoscaled electrolyte and cathode thin films for SOFC. Karlsruhe Scientific Publishing, 2008.[37] Hjalmarsson P, Hallinder J, Mogensen M. Electrochemical performance and stability of nano-particulate and bi-continuous La1-xSrxCoO3 and Ce0.9Gd0.1O1.95 composite electrodes. Journal of Solid State Electrochemistry, 2012, 16(8): 2759-2766.[38] Mai A, Haanappel V A C, Uhlenbruck S, et al. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part I. Variation of composition. Solid State Ionics, 2005, 176(15): 1341-1350.[39] Tietz F, Haanappel V A C, Mai A, et al. Performance of LSCF cathodes in cell tests. Journal of Power Sources, 2006, 156(1): 20-22.[40] Shah M, Barnett S A. Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3-δ into Gd-doped ceria. Solid State Ionics, 2008, 179(35): 2059-2064.[41] Shah M, Voorhees P W, Barnett S A. Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: the role of nano-particle coarsening. Solid State Ionics, 2011, 187(1): 64-67.[42] Simner S P, Anderson M D, Engelhard M H, et al. Degradation mechanisms of La-Sr-Co-Fe-O3 SOFC cathodes. Electrochemical and Solid-State Letters, 2006, 9(10): A478-A481.[43] Lou X Y, Wang S Z, Liu Z, et al. Improving La0.6Sr0.4Co0.2Fe0.8O3-δ cathode performance by infiltration of a Sm0.5Sr0.5CoO3-δ coating. Solid State Ionics, 2009, 180(23): 1285-1289.[44] Zhao F., Wang Z Y, Zhang L, et al. Novel nano-network cathodes for solid oxide fuel cells. Journal of Power Sources, 2008, 185(1): 13-18. |