无机材料学报 ›› 2024, Vol. 39 ›› Issue (7): 819-827.DOI: 10.15541/jim20230597 CSTR: 32189.14.10.15541/jim20230597
所属专题: 【能源环境】燃料电池(202409)
叶梓滨(), 邹高昌, 吴琪雯, 颜晓敏, 周明扬, 刘江(
)
收稿日期:
2023-12-27
修回日期:
2024-02-18
出版日期:
2024-07-20
网络出版日期:
2024-03-08
通讯作者:
刘 江, 教授. E-mail: Jiangliu@scut.edu.cn作者简介:
叶梓滨(1998-), 男, 硕士研究生. E-mail: 1193676345@qq.com
基金资助:
YE Zibin(), ZOU Gaochang, WU Qiwen, YAN Xiaomin, ZHOU Mingyang, LIU Jiang(
)
Received:
2023-12-27
Revised:
2024-02-18
Published:
2024-07-20
Online:
2024-03-08
Contact:
LIU Jiang, professor. E-mail: Jiangliu@scut.edu.cnAbout author:
YE Zibin (1998-), male, Master candidate. E-mail: 1193676345@qq.com
Supported by:
摘要:
针对阳极支撑型直接碳固体氧化物燃料电池(DC-SOFC)的浓差极化阻抗大的问题, 本研究采用改进后的凝胶注模法制备了阳极支撑型锥管状固体氧化物燃料电池(SOFC)。通过适当增加溶剂的含量, 改善了浆料的流动性, 提高了成品的质量; 通过增大造孔剂的含量, 提高了阳极的孔隙率, 减小了气体的扩散阻力。改进后的SOFC以氢气为燃料, 在800 ℃运行时, 开路电压为1.05 V, 电化学阻抗谱的极化阻抗更小, 电池的最大功率密度为0.67 W•cm-2(阴极有效面积为2.2 cm2), 明显优于改进前的SOFC。改进后的SOFC直接采用担载质量分数5% K的活性炭为燃料, 在800 ℃运行时, 开路电压为1.030 V, 接近理论电压, 最大功率密度达0.74 W•cm-2, 以400 mA进行恒流放电, 碳燃料的有效利用率为31%, 高于改进前电池的碳燃料的有效利用率17%。将改进后的4个锥管状单电池串联成电池组, 直接采用担载质量分数5% K催化剂的活性炭为燃料, 在800 ℃运行时, 最大功率达8.0 W, 高于改进前的4节DC-SOFC电池组(4.1 W), 该电池组碳燃料的有效利用率为15%, 峰值功率密度可达0.91 W•cm-2, 超过了文献报道的最高值。
中图分类号:
叶梓滨, 邹高昌, 吴琪雯, 颜晓敏, 周明扬, 刘江. 阳极支撑型锥管串接式直接碳固体氧化物燃料电池组的制备及性能[J]. 无机材料学报, 2024, 39(7): 819-827.
YE Zibin, ZOU Gaochang, WU Qiwen, YAN Xiaomin, ZHOU Mingyang, LIU Jiang. Preparation and Performances of Tubular Cone-shaped Anode-supported Segmented-in-series Direct Carbon Solid Oxide Fuel Cell[J]. Journal of Inorganic Materials, 2024, 39(7): 819-827.
化学试剂 | 生产公司 | 纯度 |
---|---|---|
NiO | 加拿大Inco公司 | 98% |
YSZ | 宜兴市熠辉耐磨材料有限公司 | 99.9% |
丙烯酰胺 | 上海阿拉丁生化科技有限公司 | 分析纯 |
N, N'-亚甲基双丙烯酰胺 | 上海阿拉丁生化科技有限公司 | 分析纯 |
柠檬酸铵 | 上海麦克林生化科技有限公司 | 分析纯 |
聚乙二醇 | 上海阿拉丁生化科技有限公司 | 99.0% |
邻苯二甲酸二辛酯 | 上海麦克林生化科技有限公司 | 99.0% |
三乙醇胺 | 上海麦克林生化科技有限公司 | 99.0% |
聚乙烯醇缩丁醛 | 上海阿拉丁生化科技有限公司 | 99.0% |
Al2O3 | 淄博信富盟化工有限公司 | 99.0% |
GDC | 中国科学院宁波材料技术与工程研究所 | 99.50% |
银导电胶DAD-87 | 上海合成树脂研究所 | 99.99% |
粒状活性炭 | 上海阿拉丁试剂有限公司 | 触媒载体用 |
碳酸钾 | 上海麦克林生化科技有限公司 | 99% |
表S1 原料和化学试剂
Table S1 Raw materials and chemical reagents
化学试剂 | 生产公司 | 纯度 |
---|---|---|
NiO | 加拿大Inco公司 | 98% |
YSZ | 宜兴市熠辉耐磨材料有限公司 | 99.9% |
丙烯酰胺 | 上海阿拉丁生化科技有限公司 | 分析纯 |
N, N'-亚甲基双丙烯酰胺 | 上海阿拉丁生化科技有限公司 | 分析纯 |
柠檬酸铵 | 上海麦克林生化科技有限公司 | 分析纯 |
聚乙二醇 | 上海阿拉丁生化科技有限公司 | 99.0% |
邻苯二甲酸二辛酯 | 上海麦克林生化科技有限公司 | 99.0% |
三乙醇胺 | 上海麦克林生化科技有限公司 | 99.0% |
聚乙烯醇缩丁醛 | 上海阿拉丁生化科技有限公司 | 99.0% |
Al2O3 | 淄博信富盟化工有限公司 | 99.0% |
GDC | 中国科学院宁波材料技术与工程研究所 | 99.50% |
银导电胶DAD-87 | 上海合成树脂研究所 | 99.99% |
粒状活性炭 | 上海阿拉丁试剂有限公司 | 触媒载体用 |
碳酸钾 | 上海麦克林生化科技有限公司 | 99% |
图1 固体氧化物燃料电池的制备过程
Fig. 1 Preparation of solid oxide fuel cells (a) Illustration of process for preparing anode supports; (b) Photo of a series of tubular cone-shaped SOFCs at different preparation stages (2-6) in contrast to green anode support (1); (c) The segmented-in-series four-cell stack; The tubular cone-shaped SOFCs marked with 2-6 are pre-sintered anode support, anode support with a co-sintered functional layer, anode support coated with electrolyte layer, completed tubular cone-shaped cell with one end closed, and completed tubular cone-shaped cell with both ends open, respectively
Component | Ref.[ | Ref.[ | This work |
---|---|---|---|
NiO-YSZ | 49.7% | 57.5% | 44.2% |
AM | 7.9% | 11.5% | 7.1% |
MBAM | 0.8% | 0.6% | 0.9% |
Deionized water | 20.7% | 17.2% | 26% |
Graphite | 10% | 11.5% | 13.2% |
AC | 1.7% | - | 1.3% |
Polyacrylic acid | - | 1.7% | - |
TEA | 1.0% | - | - |
PEG-600 | 8.2% | - | 7.3% |
表1 凝胶注模成型浆料成分对比
Table 1 Comparison of the composition of gel-casting slurries
Component | Ref.[ | Ref.[ | This work |
---|---|---|---|
NiO-YSZ | 49.7% | 57.5% | 44.2% |
AM | 7.9% | 11.5% | 7.1% |
MBAM | 0.8% | 0.6% | 0.9% |
Deionized water | 20.7% | 17.2% | 26% |
Graphite | 10% | 11.5% | 13.2% |
AC | 1.7% | - | 1.3% |
Polyacrylic acid | - | 1.7% | - |
TEA | 1.0% | - | - |
PEG-600 | 8.2% | - | 7.3% |
图3 工艺改进前后以氢气为燃料的SOFC单电池的电化学性能及其微观结构
Fig. 3 Electrochemical performance and microstructure of hydrogen-fueled SOFC single cell before and after process improvement (a, b) Output performances; (c) Electrochemical impedance spectra; (d) Comparison of the corresponding fitted resistances; (e, f) Microstructures of the SOFC observated by SEM. Colorful figures are available on website
图4 以担载质量分数5% K的活性炭为燃料的DC-SOFC单电池的电化学性能
Fig. 4 Electrochemical performance of a single DC-SOFC using 5% (in mass) K activated carbon (a) Output performances; (b) Open circuit voltages; (c) Electrochemical impedance spectra; (d) Comparison of the corresponding fitted resistances; (e) Discharge characteristics. Colorful figures are available on website
图5 测试后的DC-SOFC阳极微观结构
Fig. 5 Microstructure of the DC-SOFC anode after testing (a-d) Surface SEM image (a) and EDS mappings of K (b), C (c) and Ag (d); (e-g) Cross-sectional SEM image (e) and EDS mappings of K (f) and C (g)
图6 采用担载质量分数5% K活性炭作为燃料的锥管串接式电池组的(a)输出性能及(b)放电特性
Fig. 6 (a) Output performance and (b) discharge characteristic of the tubular cone-shaped segmented-in-series stack fueled by 5% (in mass) K-loaded activated carbon
[1] | KILKIS S, KRAJACIC G, DUIC N, et al. Advances in integration of energy, water and environment systems towards climate neutrality for sustainable development. Energy Conversion and Management, 2020, 225: 113410. |
[2] | XU G Y, SCHWARZ P, YANG H L. Adjusting energy consumption structure to achieve China’s CO2emissions peak. Renewable & Sustainable Energy Reviews, 2020, 122: 109737. |
[3] | SIVABALAN K, HASSAN S, YA H, et al. A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply. Journal of Physics: Conference Series, 2021, 1831: 012033. |
[4] | TANG Y B, LIU J, SUI J. A novel direct carbon solid oxide fuel cell. 11th International Symposium on Solid Oxide Fuel Cells (SOFC), Vienna, 2009. |
[5] | LIU R Z, ZHAO C H, LI J L, et al. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells. Journal of Power Sources, 2010, 195(2): 480. |
[6] | LIU G Y, ZHOU A N, QIU J S, et al. Utilization of bituminous coal in a direct carbon fuel cell. International Journal of Hydrogen Energy, 2016, 41(20): 8576. |
[7] | RADY A C, GIDDEY S, BADWAL S P S, et al. Review of fuels for direct carbon fuel cells. Energy & Fuels, 2012, 26(3): 1471. |
[8] | GIDDEY S, BADWAL S P S, KULKARNI A, et al. A comprehensive review of direct carbon fuel cell technology. Progress in Energy and Combustion Science, 2012, 38(3): 360. |
[9] | DEEPI A S, PRIYA S D, NESARAJ A S, et al. Component fabrication techniques for solid oxide fuel cell (SOFC) — a comprehensive review and future prospects. International Journal of Green Energy, 2022, 19(14): 1600. |
[10] | NAKAGAWA N, ISHIDA M. Performance of an internal direct- oxidation carbon fuel cell and its evaluation by graphic exergy analysis. Industrial & Engineering Chemistry Research, 1988, 27(7): 1181. |
[11] | XIE Y M, TANG Y B, LIU J. A verification of the reaction mechanism of direct carbon solid oxide fuel cells. Journal of Solid State Electrochemistry, 2013, 17(1): 121. |
[12] | CARBONELL M S, VILLAGRACIA A C, ONG H L, et al. Review- bibliometrics and current research trends on direct carbon-solid oxide fuel cells utilizing biomass as fuel. Journal of the Electrochemical Society, 2023, 170(4): 044510. |
[13] | 刘江, 颜晓敏. 直接碳固体氧化物燃料电池. 电化学, 2020, 26(2): 175. |
[14] | 唐玉宝, 刘江. 以活性炭为燃料的固体氧化物燃料电池. 物理化学学报, 2010, 26(5): 1191. |
[15] | TANG Y B, LIU J. Effect of anode and boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells. International Journal of Hydrogen Energy, 2010, 35(20): 11188. |
[16] | 谢永敏. 直接碳固体氧化物燃料电池的反应机理及其在电-气联产方面的应用. 广州: 华南理工大学博士学位论文, 2015. |
[17] | YAN X M, ZHOU M Y, ZHANG Y P, et al. An all-solid-state carbon-air battery reaching an output power over 10 W and a specific energy of 3600 Wh kg-1. Chemical Engineering Journal, 2021, 404: 127057. |
[18] | ELLEUCH A, BOUSSETTA A, YU J S, et al. Experimental investigation of direct carbon fuel cell fueled by almond shell biochar: Part I. Physicochemical characterization of the biochar fuel and cell performance examination. International Journal of Hydrogen Energy, 2013, 38(36): 16590. |
[19] | ZHOU Q, CAI W Z, ZHANG Y P, et al. Electricity generation from corn cob char though a direct carbon solid oxide fuel cell. Biomass & Bioenergy, 2016, 91: 250. |
[20] | CAI W Z, ZHOU Q, XIE Y M, et al. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst. Applied Energy, 2016, 179: 1232. |
[21] | CAI W Z, LIU J, YU F Y, et al. A high performance direct carbon solid oxide fuel cell fueled by Ca-loaded activated carbon. International Journal of Hydrogen Energy, 2017, 42(33): 21167. |
[22] | QIU Q Y, ZHOU M Y, CAI W Z, et al. A comparative investigation on direct carbon solid oxide fuel cells operated with fuels of biochar derived from wheat straw, corncob, and bagasse. Biomass & Bioenergy, 2019, 121: 56. |
[23] | LI X, ZHU Z H, DE MARCO R, et al. Evaluation of raw coals as fuels for direct carbon fuel cells. Journal of Power Sources, 2010, 195(13): 4051. |
[24] | HUIJSMANS J P P. Ceramics in solid oxide fuel cells. Current Opinion in Solid State and Materials Science, 2001, 5(4): 317. |
[25] | LI C J, LI C X, XING Y Z, et al. Influence of YSZ electrolyte thickness on the characteristics of plasma-sprayed cermet supported tubular SOFC. Solid State Ionics, 2006, 177(19-25): 2065. |
[26] | MOON H, KIM S D, HYUN S H, et al. Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. International Journal of Hydrogen Energy, 2008, 33(6): 1758. |
[27] | DING J, LIU J, YUAN W S, et al. Slip casting combined with colloidal spray coating in fabrication of tubular anode-supported solid oxide fuel cells. Journal of the European Ceramic Society, 2008, 28(16): 3113. |
[28] | BAI Y H, LIU J, WANG C L. Performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack fabricated by dip coating technique. International Journal of Hydrogen Energy, 2009, 34(17): 7311. |
[29] | XIAO J, CAI W Z, LIU J, et al. A novel low-pressure injection molding technique for fabricating anode supported solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(10): 5105. |
[30] | PILLAI M R, GOSTOVIC D, KIM I, et al. Short-period segmented- in-series solid oxide fuel cells on flattened tube supports. Journal of Power Sources, 2007, 163(2): 960. |
[31] | YOUNG A C, OMATETE O O, JANNEY M A, et al. Gelcasting of alumina. Journal of the American Ceramic Society, 1991, 74(3): 612. |
[32] | MORALES M, LAGUNA-BERCERO M A. Microtubular solid oxide fuel cells fabricated by gel-casting: the role of supporting microstructure on the mechanical properties. RSC Advances, 2017, 7(29): 17620. |
[33] | ZHANG L, JIANG S P, WANG W, et al. NiO/YSZ, anode- supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting. Journal of Power Sources, 2007, 170(1): 55. |
[34] | 叶梓滨, 周明扬, 邹高昌, 等. 凝胶注模法制备锥管串接式阳极支撑固体氧化物燃料电池及其性能研究. 陶瓷学报, 2023, 44(4): 761. |
[35] | YU F Y, ZHANG Y P, YU L, et al. All-solid-state direct carbon fuel cells with thin yttrium-stabilized-zirconia electrolyte supported on nickel and iron bimetal-based anodes. International Journal of Hydrogen Energy, 2016, 41(21): 9048. |
[36] | YU J L, WANG H J, ZHANG J, et al. Gelcasting preparation of porous silicon nitride ceramics by adjusting the content of monomers. Journal of Sol-Gel Science and Technology, 2010, 53(3): 515. |
[37] | LIU Y, TANG Y B, DING J, et al. Electrochemical performance of cone-shaped anode-supported segmented-in-series SOFCs fabricated by gel-casting technique. International Journal of Hydrogen Energy, 2012, 37(1): 921. |
[38] | HUANG Y, MA L G, LE H R, et al. Improving the homogeneity and reliability of ceramic parts with complex shapes by pressure- assisted gel-casting. Materials Letters, 2004, 58(30): 3893. |
[39] | MA L G, HUANG Y, YANG J L, et al. Effect of plasticizer on the cracking of ceramic green bodies in gelcasting. Journal of Materials Science, 2005, 40(18): 4947. |
[40] | YANG J, YU J, HUANG Y. Recent developments in gelcasting of ceramics. Journal of the European Ceramic Society, 2011, 31(14): 2569. |
[41] | XIANG J H, HUANG Y, XIE Z P. Study of gel-tape-casting process of ceramic materials. Materials Science and Engineering: A, 2002, 323(1/2): 336. |
[42] | MINH N Q. Ceramic fuel cells. Journal of the American Ceramic Society, 1993, 76(3): 563. |
[43] | BAI Y H, LIU Y, TANG Y B, et al. Direct carbon solid oxide fuel cell—a potential high performance battery. International Journal of Hydrogen Energy, 2011, 36(15): 9189. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[3] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[4] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[7] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[8] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[9] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[10] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[13] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||