无机材料学报 ›› 2013, Vol. 28 ›› Issue (4): 347-357.DOI: 10.3724/SP.J.1077.2013.12480 CSTR: 32189.14.SP.J.1077.2013.12480
• • 下一篇
肖学峰1,2,3, 徐家跃3, 向卫东1
收稿日期:
2012-08-03
修回日期:
2012-09-14
出版日期:
2013-04-10
网络出版日期:
2013-03-20
作者简介:
肖学峰(1977–), 男, 博士研究生. E-mail: xxf666666@163.com
基金资助:
XIAO Xue-Feng1,2,3, XU Jia-Yue3, XIANG Wei-Dong1
Received:
2012-08-03
Revised:
2012-09-14
Published:
2013-04-10
Online:
2013-03-20
About author:
XIAO Xue-Feng. E-mail: xxf666666@163.com
Supported by:
摘要:
双读出量能器是一种全新设计的高能粒子探测装置, 它能同时测量到Cherenkov光和闪烁光, 因而能更全面地获得高能粒子的信息。目前, 双读出量能器主要有三种设计方式: (1)采用石英纤维产生Cherenkov光, 塑料闪烁纤维生成闪烁光; (2)分别以未掺杂的晶体纤维作为Cherenkov辐射体、Ce掺杂的同种晶体纤维作为闪烁体; (3)采用同种闪烁晶体有效分离Cherenkov光和闪烁光。第三种设计可以消除取样涨落、提高量能器的分辨率, 因而备受关注。本文基于第三种设计方式探讨了钨酸铅(PbWO4)、锗酸铋(Bi4Ge3O12)、硅酸铋(Bi4Si3O12)和镥铝石榴石(Lu3Al5O12)四种。闪烁晶体在双读出量能器方面的研究进展和可能的应用。Pr掺杂PWO晶体以及硅酸铋晶体都有可能用于双读出量能器, 而后者由于吸收边比锗酸铋更短, 更易于分离Cherenkov光和闪烁光, 在双读出量能器应用方面显示出明显的优势。稀土离子掺杂有望进一步提高硅酸铋晶体的性能, 开发出更适合双读出应用的闪烁材料。
中图分类号:
肖学峰, 徐家跃, 向卫东. 双读出量能器用闪烁晶体研究进展[J]. 无机材料学报, 2013, 28(4): 347-357.
XIAO Xue-Feng, XU Jia-Yue, XIANG Wei-Dong. Progress on Scintillation Crystals for Dual-readout Calorimeter[J]. Journal of Inorganic Materials, 2013, 28(4): 347-357.
图2 双读出量能器实验探测装置[25]
Fig. 2 Experimental setup of the tests performed on single crystals. The angle θ is negative when the crystal is oriented as drawn here[25]
Property | PWO | BGO | BSO |
---|---|---|---|
Density/(g·cm-3) | 8.28 | 7.13 | 6.80 |
Radiation length/mm | 9.2 | 11.2 | 11.5 |
Radiation hardness/rad | 105-106 | 104-105 | 105-106 |
Decay constant/ns | 2.2(50%),9.9(34%), 39 (16%)-10 | 5.2(2%), 45(9%), 279 (89%)-300 | 2.4(6%), 26(12%), 99 (82%)-100 |
Peak emission/nm | 430 | 480 | 480 |
Peak excitation/nm | 325 | 295 | 285 |
Refractive index, n | 2.20 | 2.15 | 2.06 |
Light yield, LY(relative) | 5 | 100 | 20 |
Melting point/℃ | 1123 | 1050 | 1030 |
Hardness | 3 | 5 | 5 |
Cleavage | (101) | none | none |
Hygroscopicity | no | no | no |
Temperature coefficient/(%·℃-1) | -1.9 | -1.6 | -2.0 |
Energy loss/MeV | 13.0 | 24.1 | 22.9 |
Moliere radius/cm | 2.0 | 2.3 | - |
Energy resolution(662 keV,%) | 15(1GeV) | 16 | 22 |
Table 1 Some relevant properties of PWO, BGO and BSO crystals [13,25,41-43]
Property | PWO | BGO | BSO |
---|---|---|---|
Density/(g·cm-3) | 8.28 | 7.13 | 6.80 |
Radiation length/mm | 9.2 | 11.2 | 11.5 |
Radiation hardness/rad | 105-106 | 104-105 | 105-106 |
Decay constant/ns | 2.2(50%),9.9(34%), 39 (16%)-10 | 5.2(2%), 45(9%), 279 (89%)-300 | 2.4(6%), 26(12%), 99 (82%)-100 |
Peak emission/nm | 430 | 480 | 480 |
Peak excitation/nm | 325 | 295 | 285 |
Refractive index, n | 2.20 | 2.15 | 2.06 |
Light yield, LY(relative) | 5 | 100 | 20 |
Melting point/℃ | 1123 | 1050 | 1030 |
Hardness | 3 | 5 | 5 |
Cleavage | (101) | none | none |
Hygroscopicity | no | no | no |
Temperature coefficient/(%·℃-1) | -1.9 | -1.6 | -2.0 |
Energy loss/MeV | 13.0 | 24.1 | 22.9 |
Moliere radius/cm | 2.0 | 2.3 | - |
Energy resolution(662 keV,%) | 15(1GeV) | 16 | 22 |
图3 电子簇(50 GeV)通过钼掺杂钨酸铅晶体产生信号的平均时间结构, 5% Mo(a)和1% Mo(b)[4]
Fig. 3 Average time structure of the signals from a PbWO4 crystal doped with 5% Mo(a) and 1% Mo(b), generated by 50 GeV electrons[4]
图4 不同浓度钼掺杂钨酸铅晶体的平均时间信号[44]
Fig. 4 Average time structure of the signals from the light traversing a U330 filter for PbWO4 crystals with different levels of Mo doping[44]
图5 BGO晶体的Cherenkov光和闪烁光时间结构信号强度[12]
Fig. 5 The time structure of a typical shower signal measured in the BGO em calorimeter equipped with a UV filter. The UV BGO signals were used to measure the relative contributions of scintillation light (gate 2) and Cherenkov light (gate 1)[12]
图7 BSO和 BGO晶体(180 GeV)的时间结构信号对比[25]
Fig. 7 Average time structure of the signals from light generated by 180 GeV pions traversing the BSO and BGO crystals at θ=30°, and transmitted by the U330 filter[25]
图8 BSO和BGO晶体的发射谱吸收谱的对比[25]
Fig. 8 Emission and absorption spectra (left-hand scale) of the BSO and BGO crystals, and the transmission curve of the U330 and UG11 filters (right-hand scale)[25]
Crystal | Dopants | Attenuation constants | Attenuation of Cherenkov light | Intensity of Cherenkov light /mV | Separation the scintillation and Cherenkov light |
---|---|---|---|---|---|
PWO | Un-doped | 9.7 ns | — | — | No separation |
1%Mo | 26.3 ns | Reducing with Mo concentration decreasing | 115 | Good separation | |
5%Mo | 26.3 ns | 86 | |||
0.5%Pr | 4.9 μs | Reducing with Pr concentration increasing | — | No separation | |
1.5%Pr | 3.1 μs | ||||
BGO | Un-doped | 300 ns | Same | 68 | Good separation |
BSO | Un-doped | 100 ns | 105 | Good separation |
Table 2 Properties of dual-read for PWO(50 GeV), BGO and BSO (180 GeV) crystals
Crystal | Dopants | Attenuation constants | Attenuation of Cherenkov light | Intensity of Cherenkov light /mV | Separation the scintillation and Cherenkov light |
---|---|---|---|---|---|
PWO | Un-doped | 9.7 ns | — | — | No separation |
1%Mo | 26.3 ns | Reducing with Mo concentration decreasing | 115 | Good separation | |
5%Mo | 26.3 ns | 86 | |||
0.5%Pr | 4.9 μs | Reducing with Pr concentration increasing | — | No separation | |
1.5%Pr | 3.1 μs | ||||
BGO | Un-doped | 300 ns | Same | 68 | Good separation |
BSO | Un-doped | 100 ns | 105 | Good separation |
[1] | 姚年增. 晶体生长基础. 合肥: 中国科技大学出版社, 1994: 7-8. |
[2] | Zhao Jing-Tai, Wang Hong, Jin Teng-Teng, et al. Research development of inorganic scintillating crystals. Materials China, 2010, 29(10): 40-48. |
[3] | 中国科学院上海硅酸盐研究所. |
[4] | Akchurin N, Bedeschi F, Cardini A, et al. New crystals for dual-readout calorimetry. Nuclear Instruments and Methods in Physics Research A, 2009, 604(3): 512-526. |
[5] | Wigmas R. Quartz Fibers and the Prospects for Hadron Calorimetry at the 1% Resolution Level. Proceedings of the 7th International Conference on Calorimetry in High Energy Physics, Tucson, Arizona, 1997: 9-14. |
[6] | DREAM Collaboration. Dual-Readout Calorimetry for High-Quality Energy Measurements. Texas Tech University, 2010. |
[7] | Adam P. High resolution hadron calorimetry. Tsinghua University, 2012. |
[8] | Auffray E, Abler D, Brunner S, et al. LuAG Material for Dual Readout Calorimetry at Future High Energy Physics Accelerators. IEEE Nuclear Science Symposium Conference Record, 2009, 43(2): 2245-2249. |
[9] | Auffray E, Abler D, Lecoq P, et al. Dual readout with PWO Crystals and LuAG crystal scintillating Fibers. IEEE Transactions on Nuclear Science. 2010, 57(3): 1454-1459. |
[10] | Zhu Ren-Yuan. |
[11] | Akchurina N, Berntzona L, Cardini A, et al. Dual-readout calorimetry with lead tungstate crystals. Nuclear Instruments and Methods in Physics Research A, 2008, 584(2/3): 273-284. |
[12] | Akchurin N, Alwarawrah M, Cardini A, et al. Dual-readout calorimetry with crystal calorimeters. Nuclear Instruments and Methods in Physics Research A, 2009, 598(3): 710-721. |
[13] | 谢一冈,陈 昌,王 曼,等. 粒子探测器与数据获取. 北京: 科学出版社, 2003: 1-633. |
[14] | Pedrini C. Scintillation mechanisms and limiting factors on each step of relaxation of electronic excitations. Physics of the Solid State, 2005, 47(8): 1406-1411. |
[15] | Wang Ji-Yang, Wu Yi-Cheng. Progress of the research on photoelectronic functional crystals. Materials China, 2010, 29(10): 1-15. |
[16] | Shen Ding-Zhong, Ren Guo-Hao. New growth method of lead fluoride crystal with strong Cherenkov effect. Physics, 2001, 30(8): 496-500. |
[17] | 尤峻汉. 天体物理中的辐射机制, 2版. 北京: 科学出版社, 1998: 1-410. |
[18] | 任国浩. 新型Cherenkov辐射材料的研究进展. 上海先进无机材料研究与应用论坛, 上海, 2003: 114-116. |
[19] | 中国科学院高能物理研究所. |
[20] | Akchurin N, Carrell K, Hauptman J, et al. Hadron and jet detection with a dual-readout calorimeter. Nuclear Instruments and Methods in Physics Research A , 2005, 537(3): 537-561. |
[21] | Akchurin N, Atramentov O, Carrell K, et al. Separation of scintillation and Cherenkov light in an optical calorimeter. Nuclear Instruments and Methods in Physics Research A. 2005, 550(1/2): 185-200. |
[22] | Lecoq P. New crystal technologies for novel calorimeter concepts. XIII International conference on calorimetry in high energy physics (CALOR2008). Journal of Physics: Conference Series, 2009, 160(1): 012016. |
[23] | Lecoq P. Metamaterials for Novel X- or γ-ray Detector Designs. IEEE Nuclear Science Symposium Conference Record, 2008, 7(1): 1405-1409. |
[24] | Wigmans R. Recent results from the DREAM project. XIII International conference on calorimetry in high energy physics (CALOR2008). Journal of Physics: Conference Series, 2009, 160(1): 012018. |
[25] | Akchurin N, Bedeschi F, Cardini A, et al. A comparison of BGO and BSO crystals used in the dual-readout mode. Nuclear Instruments and Methods in Physics Research A, 2011, 640(1): 91-98. |
[26] | Richard W. Dual-Readout Calorimetry for High-Quality Energy Measurements. Proposal and request for beam time to CERN’s SPS Committee. Texas Tech University, 2010: 1-40. |
[27] | Meoni E. New results from the DREAM project. Nuclear Physics B (Proc. Suppl.) , 2011, 215(1): 44-47. |
[28] | Yang Pei-Zhi, Liao Jing-Ying, Shen Bing-Fu, et al. Growth of high quality PWO single crystal. Journal of Inorganic Materials, 2002, 17(2): 210-214 . |
[29] | Hans M, Rui P, Luciano M, et al. Trigger electronics for the a lice PHOS detector. Nuclear Instruments and Methods in Physics Research Section A, 2004, 518(1/2): 525-528. |
[30] | Lecoq P, Dafinei I, Auffray E, et al. Lead tungstate (PbWO4) scintillators for LHC EM calorimetry. Nuclear Instruments and Methods in Physics Research A, 1995, 365(2/3): 291-298. |
[31] | Lecoq P. Ten years of lead tungstate development. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1/2): 15-21. |
[32] | Xiang Wei-Dong, Zhang Yu-Fei, Shen Hui, et al. Optical properties of PbWO4 crystals grown by vertical gradient freeze method. Journal of Synthetic Crystals, 2011, 40(2): 343-358. |
[33] | Lin Qi-Sheng, Feng Xi-Qi. Progress on the studies of structure in PbWO4 scintillation crystals. Journal of Inorganic Materials, 2000, 15(2): 193-199. |
[34] | Feng Xi-Qi, Lin Qi-Sheng, Man Zhen-Yong, et al. Intrinsic and radiation-induced colour centers in PbWO4 crystal. Acta Physica Sinica, 2002, 51(2): 315-321. |
[35] | Feng Xi-Qi, Han Bao-Guo, Hu Guan-Qin, et al. A study on radiation damage mechanism in PbWO4 scintillating crystals. Acta Physica Sinica 1999, 48(7): 1282-1291. |
[36] | Kobayashi M, Usuki Y, Ishii M, et al. Scintillation characteristics of PbWO4 single crystals doped with Th, Zr, Ce, Sb and Mn ions. Nuclear Instruments and Methods in Physics Research A, 2001, 465(2/3): 428-439. |
[37] | Ye Chongzhi, Liao Jingying, Shao Peifa, et al. Growth and scintillation properties of F-doped PWO crystals. Nuclear Instruments and Methods in Physics Research A, 2006, 566(2): 757-761. |
[38] | Ren Guo-Hao, Chen Xiao-Feng, Mao Ri-Hua, et al. Luminescence characteristics of lead tungstate(PbWO4) scintillation crystal doped with fluorine anions. Acta Physica Sinica, 2010, 59(7): 4812-4817. |
[39] | Ye Chong-Zhi, Liao Jing-Ying, Yang Pei-Zhi, et al. The luminescence and defects of F, Y co-doped PbWO4 crystals. Acta Physica Sinica, 2006, 55(4): 1947-1952. |
[40] | 严东生, 殷之文, 廖晶莹, 等. 阴阳离子同时双掺杂的高光产额钨酸铅晶体及其生长方法技术. 中国, C30B29/32, CN200510029744.2006.04.26. |
[41] | Kobayashi M, Ishii M, Harada K, el al. Bismuth silicate Bi4Si3O12, a faster scintillator than bismuth germanate Bi4Ge3O12. Nuclear Instruments and Methods in Physics Research Seetion A, 1996, 372(1-2): 45-50. |
[42] | Ishii M, Harada K, Hirose Y, et al. Development of BSO (Bi4Si3O12) crystal for radiation detector. Optical Materials, 2002, 19(1): 201-212. |
[43] | Jiang H, Kim H J, Gul Rooh, et al. Czochralski growth and scintillation properties of Bi4Si3O12(BSO) single crystal. Nuclear Instruments and Methods in Physics Research A, 2011, 648(1): 73-76. |
[44] | Akchurin N, Bedeschi F, Cardin A, et al. Optimization of crystals for applications in dual-readout calorimetry. Nuclear Instruments and Methods in Physics Research A, 2010, 621(1/2/3): 212-221. |
[45] | Nitsche R. Crystal growth and electro-optic effect of bismuth germanate, Bi4(GeO4)3. Journal of Applied Physics, 1965, 36(8): 2358-2360. |
[46] | Johnson T F, Ballman A A. Coherent emission from rare earth ions in electro-optic crystals. Journal of Applied Physics, 1969, 40(1): 297-302. |
[47] | Nestor O H, Huang C Y. Bismuth germinate: a high-Z γ-ray and charged particle detector. IEEE Transactions on Nuclear Science, 1975, 22(1): 68-71. |
[48] | Cho Z H, Farukhi M R. BGO as a potential scintillation detector in positron cameras. Journal Nuclear Medicine, 1977, 18(8): 840-844. |
[49] | Farukhi M R. Fast Inorganic Scintillators for Time-of-flight Tomography. IEEE Publication, 1982, CH1791-3: 59-62. |
[50] | Ishii M, Kobayashi M. Single crystals for radiation detectors. Progress in Crystal Growth and Characterization of Materials, 1992, 23: 245-311. |
[51] | Schmid F, Khattak C P, Smith M B. Growth of Bi4Ge3O12 by the heat exchanger method (HEM). Journal of Crystal Growth, 1984, 70(1-2): 466-470. |
[52] | Fan S J, Shen G S, Li J L, et al. Industrial Bridgman growth of large size BGO crystals with special shapes. Crystal Properties and Preparation, 1991, 36-38: 42-45. |
[53] | Ishii M. Progress in BGO Quality Improvement at Hitachi. Princeton University, Department of Physics, 1982: 135-156. |
[54] | Borovlev Y A, Ivannikova N V, Shlegel V N, et al. Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique. Journal of Crystal Growth, 2001, 229(1): 305-311. |
[55] | He C F, Fan S J, Liao J Y, et al. Growth and characterization of BGO. Prog. Cryst. Growth Charact. Mater., 1985, 11(4): 253-262. |
[56] | Wei Zong-Ying, He Chong-Fan, Yin Zhi-Wen. Thermoluminescence study on radiation damage of Bi4Ge3012 crystal. Journal of Synthetic Crystals, 1990, 19(4): 324-330. |
[57] | Takagi K, Oi T, Fukazawa T, et al. Improvement in the scintillation conversion efficiency of Bi4Ge3O12 single crystals. Journal of Crystal Growth, 1981, 52(2): 584-587. |
[58] | Shim J B, Yoshikawa A, Bensalah A, et al. Luminescence, radiation damage, and color center creation in Eu3+-doped Bi4Ge3O12 fiber single crystals. Journal of Applied Physics, 2003, 93(9): 5131-5135. |
[59] | Bravo D A, Kaminskiiz A, Lopezy F J. Electron paramagnetic resonance investigation of Dy3+ions in Bi4Ge3O12 single crystals. J. Phys.: Condens. Matter, 1998, 10(14): 3261-3268. |
[60] | Morrison C A, Leavitt R P. Crystal field analysis of Nd3+ and Er3+ in Bi4Ge3O12. J. Chem. Phys., 1981, 74(1): 25-28. |
[61] | Bravo D, Lopez F J. An electron paramagnetic resonance study of Er3+ in Bi4Ge3O12 single crystals. J. Chem. Phys., 1993, 99(7): 4952-4959. |
[62] | Feng X Q, Hu G Q, Yin Z W, et al. Growth,laser and magneto- optic properties of Nd-doped Bi4Ge3O12 crystal. Materials Science and Engineering B, 1994, 23(2): 83-87. |
[63] | Hu Guan-Qin, Feng Xi-Qi, Yin Zhi-Wen, et al. Laser/ magneto-optic compound function crystal-Nd: Bi4Ge3O12. Journal of Inorganic Materials, 1994, 9(3): 275-280. |
[64] | Akchurin N, Bedeschi F, Cardini A, et al. Dual-readout calorimetry with a full-size BGO electromagnetic section. Nuclear Instruments and Methods in Physics Research A, 2009, 610(2): 488-501. |
[65] | Akchurin N, Astwood A, Cardini A, et al. Separation of crystal signals into scintillation and Cherenkov components. Nuclear Instruments and Methods in Physics Research A, 2008, 595(2): 359-374. |
[66] | Miyahara F, Hariu H, Ishikawa T, et al. Beam test of a BSO calorimeter. Research Report of Laboratory of Nuclear Science, 2004, 37(4): 44-50. |
[67] | Shimizu H, Miyahara F, Hariu H, et al. First beam test on a BSO electromagnetic calorimeter. Nuclear Instruments and Methods in Physics Research A, 2005, 550(1/2): 258-266. |
[68] | Liao Jing-Ying, Ye Chong-Zhi, Yang Pei-Zhi. Review on the research of Bi4Ge3O12 scintillation crystals. Chemical Research, 2004, 15(4): 52-58. |
[69] | Fan S J. Bridgman Growth of BSO Crystals. Program Abstract of ICCG-11, 1995. |
[70] | He Jing-Tang, Zhu Guo-Yi, Chen Duan-Bao, et al. Studies on the properties of BSO crystals. High Energy Physics and Nuclear Physics, 1997, 21(10): 886-890. |
[71] | Xu J Y, Wang H, He Q B, et al. Bridgman growth of Bi4Si3O12 scintillation crystals. Journal of the Chinese Ceramic Society, 2009, 37(2): 295-298. |
[72] | Fei Y T, Fan S J, Sun R Y, et al. Study on phase diagram of Bi2O3-SiO2 system for Bridgman growth of Bi4Si3O12 single crystal. Progress in Crystal Growth and Characterization of Materials, 2000, 40(1): 183-187. |
[73] | Ishii M., Senguttuvan N, Kobayashi M, et al. Crystal growth of BSO(Bi4Si3O12) by vertical Bridgman method. Journal of Crystal Growth, 1999, 205(1/2): 191-195. |
[74] | Zhang Y, Xu J Y, Zhang T T. Synthesis and luminescence properties of Eu3+-doped Bi4Si3O12. Journal of Inorganic Materials, 2011, 26(12): 1341-1344. |
[75] | Zhang Y, Xu J Y, He Q B, et al. Bridgman growth and characterization of Bi4(GexSi1-x)3O12 mixed crystals. Journal of Crystal Growth, 2013, 362: 121-124. |
[76] | Fei Yi-Ting, Sun Ren-Ying, Fan Shi-Ji. Scintillation properties of Fe and Cr doped Bi4Si3O12 crystals. Journal of Inorganic Materials, 1999, 14(3): 357-362. |
[77] | Fei Y T, Sun R Y, Fan S J, et al. Vertical bridgman growth and scintillation properties of doped Bi4Si3O12 crystals. Crystal Research and Technology, 1999, 34(9): 1149-1156. |
[78] | Fei Y T, Fan S J, Sun R Y, et al. Bridgman growth of Bi4Si3O12 scintillation crystals and doped effects on radiation resistance. Progress in Crystal Growth and Characterization of Materials, 2000, 40(1): 189-194. |
[79] | Zhang Y, Xu J Y, Shao P F. Growth and spectroscopic properties of Yb:BSO single crystal. Journal of Crystal Growth, 2011, 318(1): 920-923. |
[80] | Feng Xi-Qi. Anti-site defects in YAG and LuAG crystals. Journal of Inorganic Materials, 2010, 25(8): 785-794. |
[81] | Petrosyan A G, Ovanesyan K L, Sargsyan R V, et al. Bridgman growth and site occupation in LuAG:Ce scintillator crystals. Journal of Crystal Growth, 2010, 312(21): 3136-3142. |
[82] | Zhuravleva M, Yang K, Spurrier-Koschan M, et al. Crystal growth and characterization of LuAG:Ce:Tb scintillator. Journal of Crystal Growth, 2010, 312(8): 1244-1248. |
[83] | Sugiyama M, Fujimoto Y, Yanagida T, et al. Scintillation properties of Tm-doped Lu3Al5O12 single crystals. Optical Materials, 2011, 34(2): 439-443. |
[84] | Wang L X, Yin M, Guo C X, et al. Synthesis and luminescent properties of Ce3+ doped LuAG nano-sized powders by mixed solvo-thermal method. Journal of Rare Earths, 2010, 28(1): 16-21. |
[85] | Wang Z F, Xu M, Zhang W P, et al. Synthesis and luminescent properties of nano-scale LuAG:RE3+ (Ce, Eu) phosphors prepared by co-precipitation method. Journal of Luminescence, 2007, 122-123: 437-439. |
[86] | Chewpraditkul W, Sreebunpeng K, Nikl M, et al. Comparison of Lu3Al5O12:Pr3+ and Bi4Ge3O12 scintillators for gamma-ray detection. Radiation Measurements, 2012, 47(1): 1-5. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 郑中秋, 魏钦华, 童宇枫, 唐高, 尹航, 秦来顺. Zr4+共掺对Cs2LaLiBr6:Ce晶体的中子/伽马甄别性能的影响[J]. 无机材料学报, 2024, 39(5): 539-546. |
[14] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[15] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||