| [1] | VAN EIJK C W E. Inorganic scintillators for thermal neutron detection. IEEE Transactions on Nuclear Science, 2012,  59(5): 2242. | 
																													
																						| [2] | REN G. Development history of inorganic scintillation crystals in China. Journal of Synthetic Crystals, 2019,  48 (8): 1373. | 
																													
																						| [3] | YU J, DIAO C. Research advances of halide scintillation crystals. Chinese Journal of Rare Metals, 2016,  40(12): 1291. | 
																													
																						| [4] | MCGREGOR D S. Materials for gamma-ray spectrometers: inorganic scintillators. Annual Review of Materials Research, 2018,  48: 245. | 
																													
																						| [5] | WANG Q, REN G. Recent development on elpasolite scintillation crystals for neutron detection. Journal of the Chinese Ceramic Society, 2016,  44(3): 457. | 
																													
																						| [6] | YANG K K, MENGE P R, OUSPENSKI V.  Scintillation properties and temperature responses of Cs2LiLaBr6:Ce3+. Seoul: IEEE Nuclear Science Symposium and Medical Imaging Conference, 2013. | 
																													
																						| [7] | VAN LOEF E V D, DORENBOS P, VAN EIJK C W E, et al. Scintillation and spectroscopy of the pure and Ce3+-doped elpasolites: Cs2LiYX6(X = Cl, Br). Journal of Physics: Condensed Matter, 2002,  14: 8481. | 
																													
																						| [8] | HE J, LI W, WEI Q, et al. Growth and properties of 1-inch Cs2LiLaBr6:Ce scintillation crystals. Journal of Synthetic Crystals, 2021,  50(10): 1879. | 
																													
																						| [9] | MESICK K E, COUPLAND D D, STONEHILL L, et al. Pulse-shape discrimination and energy quenching of alpha particles in Cs2LiLaBr6:Ce3+. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017,  841: 139. | 
																													
																						| [10] | QUARATI F, ALEKHIN M, KRÄMER K, et al. Co-doping of CeBr3 scintillator detectors for energy resolution enhancement. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014,  735: 655. | 
																													
																						| [11] | GUSS P, FOSTER M E, WONG B M, et al. Results for aliovalent doping of CeBr3 with Ca2+. Journal of Applied Physics, 2014,  115(3): 034908. | 
																													
																						| [12] | PANWAR S, MAZUMDAR I, SARIYAL R, et al. Characterization of a Sr co-doped LaBr3: Ce detector for γ-ray spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020,  982: 164567. | 
																													
																						| [13] | WU Y, LI Q, JONES S, et al. Defect engineering by codoping in KCaI3:Eu2+ single-crystalline scintillators. Physical Review Applied, 2017,  8(3): 034011. | 
																													
																						| [14] | RUTA F L, SWIDER S, LAM S, et al. Understanding phase equilibria and segregation in Bridgman growth of Cs2LiYCl6 scintillator. Journal of Materials Research, 2017,  32(12): 2373. | 
																													
																						| [15] | SAGAR V, SURESH L, VINODKUMAR T, et al. Zirconium doped ceria nanoparticles: an efficient and reusable catalyst for a green multicomponent synthesis of novel phenyldiazenyl- chromene derivatives using aqueous medium. ACS Sustainable Chemistry & Engineering, 2016,  4(4): 2376. | 
																													
																						| [16] | LIN J, WEI Q, ZHANG D, et al. Crystal growth and scintillation properties of non-stoichiometric Cs2LiLaBr6:Ce. Crystal Research and Technology, 2019,  54(10): 1900047. | 
																													
																						| [17] | TONG Y, WEI Q, Li W, et al. Effects of Ce3+substitution on the local structure of cerium and scintillation properties of CLLBC:Ce crystals. Journal of Crystal Growth, 2022,  600: 126940. | 
																													
																						| [18] | LAIDLER K J. The development of the Arrhenius equation. Journal of chemical Education, 1984,  61(6): 494. | 
																													
																						| [19] | SHIRWADKAR U, GLODO J, VAN LOEF E V, et al. Scintillation properties of Cs2LiLaBr6(CLLB) crystals with varying Ce3+concentration. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011,  652(1): 268. | 
																													
																						| [20] | WANG L, DENG Q P, HU H, et al. Glyphosate induces benign monoclonal gammopathy and promotes multiple myeloma progression in mice. Journal of Hematology & Oncology, 2019,  12(1): 70. | 
																													
																						| [21] | YANG K, MENGE P R, OUSPENSKI V. Li co-doped NaI:Tl (NaIL)―a large volume neutron-gamma scintillator with exceptional pulse shape discrimination. IEEE Transactions on Nuclear Science, 2017,  64(8): 2406. | 
																													
																						| [22] | ÅBERG D, SADIGH B, SCHLEIFE A, et al. Origin of resolution enhancement by co-doping of scintillators: insight from electronic structure calculations. Applied Physics Letters, 2014,  104(21): 219908. | 
																													
																						| [23] | TRULS N. A Kröger-Vink compatible notation for defects in inherently defective sublattices. Journal of Korean Ceramic Society, 2010,  47(1): 19. | 
																													
																						| [24] | WU Y, LI Q, RUTSTROM D J, et al. Tailoring the properties of europium-doped potassium calcium iodide scintillators through defect engineering. Physica Status Solidi (RRL)-Rapid Research Letters, 2018,  12(2): 1700403. |