[1] Song C, Hang Y, Xia C, et al. Characteristics of large-sized ruby crystal grown by temperature gradient technique. Opt. Mater., 2005, 27(4): 699-703.[2] Moncorgé R, Boulon G, Vivien D, et al. Optical properties and tunable laser action of Verneuil-grown single crystals of Al2O3:Ti3+. IEEE J. Quantum Electron., 1988, 24(6): 1049-1051.[3] Peshev P, Delineshev S, Petrov V, et al. Bridgman-stockbarger growth and spectral characteristics of Al2O3: Ti3+ single crystals. Cryst. Res. Technol., 1988, 23(5): 641-645.[4] Perner B, Kvapil J, Pletil Z. The influence of protective atmosphere on the growth of ruby single crystals by Czochralski method. J. Cryst. Growth, 1981, 52(2):552-555.[5] Cockayne B, Chesswas M, Gasson D. Facetting and optical perfection in Czochralski grown garnets and ruby. J. Mater. Sci., 1969, 450-456. [6] Wu A H, Pan S K, Xu J, et al. Spectral properties of Yb:GdVO4 crystals. J. Cryst. Growth, 2009, 311(3): 888-891.[7] Yan X, Wu X, Zhou J, et al. Growth of Tm: Ho: YVO4 laser single crystals by the floating zone method. J. Cryst. Growth, 2000, 212(1/2): 204-210.[8] Yan X, Wu X, Zhou J, et al. Growth of laser single-crystals Er:YVO4 by floating zone method. J. Cryst. Growth, 2000, 220(4): 543-547.[9] Gu G, Takamuku K, Koshizuka N, et al. Large single crystal Bi-2212 along the c-axis prepared by floating zone method. J. Cryst. Growth, 1993, 130(1/2): 325-329.[10] Fujii T, Watanabe T, Matsuda A. Single-crystal growth of Bi2Sr2Ca2Cu3O10+- (Bi-2223) by TSFZ method. J. Cryst. Growth, 2001, 223(1/2): 175-180.[11] Saito M. Growth process of gas bubble in ruby single crystals by floating zone method. J. Cryst. Growth, 1986, 74(2): 385-390.[12] Saito M. Gas-bubble formation of ruby single crystals by floating zone method with an infrared radiation convergence type heater. J. Cryst. Growth, 1985, 71(3): 664-672.[13] Guguschev C, Gotze J, Gobbels M. Cathodoluminescence microscopy and spectroscopy of synthetic ruby crystals grown by the optical floating zone technique. A. Mineral., 2010, 95(4): 449-455. [14] Shen H, Xu J, Wu A, et al. Growth and characterization of magneto-optical YFeO3 crystals. Cryst. Res. Technol., 2007, 42(10): 943-947.[15] 申 慧, 徐家跃, 郁金星, 等(SHEN Hui, et al). 光学浮区法生长 YFeO3 晶体. 无机材料学报(Jounal of Inorganic Materials), 2007, 22(6): 1099-1102.[16] Tzing W, Tuan W. Exaggerated grain growth in Fe-doped Al2O3. J. Mater. Sci. Lett., 1999, 18(14): 1115-1117.[17] 唐慧丽, 董永军, 徐 军, 等(TANG Hui-Li, et al). ScAlMgO4 晶体的生长缺陷. 硅酸盐学报(Journal of the Chinese Ceramic Society), 2008, 36(5): 689-693.[18] 李红军, 赵广军, 曾雄辉, 等 (LI Hong-Jun, et al). 高温闪烁晶体Ce:YAP中的小角度晶界. 无机材料学报(Jounal of Inorganic Materials), 2004, 19(5): 1186-1190.[19] 张克从, 张乐穗. 晶体生长生长科学与技术, 2版. 北京: 科学出版社, 1997: 486-505.[20] 闵乃本. 晶体生长的物理基础. 上海: 上海科学技术出版社, 1982: 189-219.[21] Bardsley W, Boulton J, Hurle D. Constitutional supercooling during crystal growth from stirred metls: III. The morphology of the germanium cellular structure. Solid State Electron., 1962, 5(6): 395-403.[22] Cockayne B. Developments in melt-grown oxide crystals. J. Cryst. Growth, 1968, (3/4): 60-70.[23] Long X, Wang G, Han T P. Growth and spectroscopic properties of Cr3+-doped LaSc3(BO3)4. J. Cryst. Growth, 2003, 249(1/2): 191-194.[24] Wang G, Gallagher H, Han T, et al. Crystal growth and optical characterisation of Cr3+-doped YAl3(BO3)4. J. Cryst. Growth, 1995, 153(3/4): 169-174.[25] Jouini A, Yoshikawa A, Guyot Y, et al. Potential candidate for new tunable solid-state laser between 1 and 2 -m: Ni2+-doped MgAl2O4 spinel grown by the micro-pulling-down method. Opt. Mater., 2007, 30(1): 47-49. |