[1] Wu Y P, Rahm E, Holze R. Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries. Electrochim. Acta, 2002, 47(21): 3491-3507.
[2] Lian P C, Zhu X F, Liang S Z, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta, 2010, 55(12): 3909-3914.
[3] Guo P, Song H H, Chen X H. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun., 2009, 11(6): 1320-1324.
[4] Wang C Y, Li D, Too C O, et al. Electrochemical properties of graphene paper electrode used in lithium batteries. Chem. Mater., 2009, 21(13): 2604-2606.
[5] Wang G X, Shen X P, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 2009, 47(8): 2049-2053.
[6] Pan D Y, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets. Chem. Mater., 2009, 21(14): 3136-3142.
[7] Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett., 2008, 8(8): 2277-2282.
[8] Liang M H, Zhi L J. Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem., 2009, 19(20): 5871-5878.
[9] Wang G X, Wang B, Wang X L, et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem., 2009, 19(44): 8378-8384.
[10] Lee J K, Smith K B, Hayner C M, et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun., 2010, 46(12): 2025-2027.
[11] Chou S L, Wang J Z, Choucair M, et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun., 2010, 12(2): 303-306.
[12] Chen S Q, Chen P, Wu M H, et al. Graphene supported Sn-Sb@carbon core-shell particles as a superior anode for lithium ion batteries. Electrochem. Commun., 2010, 12(10): 1302-1306.
[13] Yao J, Shen X P, Wang B, et al. In situ chemical synthesis of SnO2-graphene nanocomposite as an anode materials for lithium- ion batteries.-Electrochem. Commun., 2009, 11(10): 1849-1852.
[14] Peak S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano lett., 2009, 9(1): 72-75.
[15] Yang S B, Cui G L, Pang S P, et al. Fabrication of cobalt and cobalt oxide/graphene composites:towards high-performance anode materials for lithium ion batteries. Chemsuschem, 2010, 3(2): 236-239.
[16] Nose K, Fujita H, Omata T, et al. Chemical role of amines in the colloidal synthesis of CdSe quantum dots and their luminescence properties.-J. Lumin., 2007, 126(1): 21-26.
[17] Bera P, Kim C H, Seok S I. High-yield synthesis of quantum- confined CdS nanorods using a new dimeric cadmium(Ⅱ) complex of S-benzyldithiocarbazate as single-source molecular precursor. Solid State Sci., 2010, 12(4): 532-535.
[18] Unni C, Philip D, Gopchandran K G. Studies on optical absorption and photoluminescence of thioglycerol-stabilized CdS quantum dots. Spectrochim. Acta A, 2008, 71(4): 1402-1407.
[19] Cao AN, Liu Z, Chu S S, et al. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater., 2010, 22(1): 103-106.
[20] 郑洪河. 锂离子电池电解质. 北京: 化学工业出版社, 2006: 69-103. |