胡钰晴1,2, 朱一新1,2, 乐先浩1, 万青1
收稿日期:2025-09-28
修回日期:2025-11-20
通讯作者:
万 青,研究员. E-mail:qing-wan@ylab.ac.cn
作者简介:胡钰晴(1995-),女,博士. E-mail: yuqing-hu@ylab.ac.cn
基金资助:HU Yuqing1,2, ZHU Yixin1,2, LE Xianhao1, WAN Qing1
Received:2025-09-28
Revised:2025-11-20
Contact:
WAN Qing, professor. E-mail: qing-wan@ylab.ac.cn
About author:HU Yuqing (1995-), female, PhD. E-mail: yuqing-hu@ylab.ac.cn
Supported by:摘要: 钽酸锂(LiTaO3, LT)作为一种重要的多功能铁电材料,以其优异的热释电系数、稳定的物理化学特性及宽波段光谱响应,在红外探测器、热成像传感器等领域发挥着关键作用。近年来,随着微电子机械系统(MEMS)与集成光子学技术的迅速发展,传感器与探测系统正朝着小型化、集成化与高性能化的方向不断演进。在此背景下,作为热释电器件核心敏感单元的材料,由传统块体晶体逐步转向高质量的LT单晶薄膜,以实现更优的热学管理与电学性能。本文系统综述了LT单晶的关键减薄技术发展脉络,涵盖了从传统的机械研磨减薄、化学机械抛光(CMP),到新兴的离子切片与智能剥离(Smart-Cut)等先进工艺。重点分析了各技术路径的原理、可实现的薄膜厚度、晶体质量及其优缺点。在此基础上,本文进一步探讨了减薄后的LT薄膜在热释电探测器中的应用优势与性能表现。最后,梳理了当前LT单晶薄膜制备与集成所面临的技术挑战,并展望了未来技术的发展方向,旨在为新一代高性能、微型化热释电器件的研发提供参考。
中图分类号:
胡钰晴, 朱一新, 乐先浩, 万青. 钽酸锂晶圆减薄技术及其热释电红外探测器应用进展[J]. 无机材料学报, DOI: 10.15541/jim20250381.
HU Yuqing, ZHU Yixin, LE Xianhao, WAN Qing. Lithium Tantalate Wafer: Advances in Thinning Technology and Application in Pyroelectric Infrared Detectors[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250381.
| [1] WHATMORE R W, WARD S J.Pyroelectric infrared detectors and materials—a critical perspective. Journal of Applied Physics, 2023, 133(8): 080902. [2] SI J S, XIAO X F, ZHANG Y, et al.Pyroelectric properties and applications of lithium tantalate crystals. Crystals, 2024, 14(7): 579. [3] XIAO X F, XU Q Y, LIANG S J, et al.Preparation and defect structure analysis of near-stoichiometric lithium tantalate wafers. RSC Advances, 2022, 12(30): 19091. [4] ROUNDY C B, BYER R L.Sensitive LiTaO3 pyroelectric detector. Journal of Applied Physics, 1973, 44(2): 929. [5] ZHU Y X, WAN Q.Lithium niobate/lithium tantalate single-crystal thin films for post-Moore era chip applications. Moore and More, 2024, 1(1): 6. [6] XIAO X F, LIANG S J, SI J S, et al.Performance of LiTaO3 crystals and thin films and their application. Crystals, 2023, 13(8): 1233. [7] PARK S H, PARK C S, KANG K M, et al.Highly stable all-sputtered solid-state electrochromic devices with co-sputtered LiTaO3 electrolyte films for smart windows. Advanced Materials Technologies, 2025, 10(20): e00286. [8] ZHANG R T, JIN Y H, LI Y M, et al.Bi3+/Sm3+ Co-doped LiTaO3 photochromic perovskites: an ultrafast erasable optical information storage medium. Inorganic Chemistry Frontiers, 2023, 10(16): 4869. [9] 张德银, 黄大贵, 李金华, 等. ITO衬底上LiTaO3薄膜的制备与介电特性. 红外与毫米波学报, 2007, 26(3): 170. [10] FAN W, SHUAI Y, PAN X Q, et al.Influence of annealing ambience on structural and piezoelectric properties of single crystal LiTaO3 thin film. Materials Express, 2023, 13(2): 345. [11] SHEN J Y, YAO W F, BAILIE WORKIE T, et al.Suppressed transverse mode generation in TF-SAW resonators based on LiTaO3/sapphire. IEEE Electron Device Letters, 2024, 45(11): 2241. [12] LOUISET A, SCHAMM-CHARDON S, KONONCHUK O, et al.Reconstruction of depth resolved strain tensor in off-axis single crystals: application to H+ ions implanted LiTaO3. Applied Physics Letters, 2021, 118(8): 082903. [13] STENGER V, SHNIDER M, SRIRAM S, et al.Thin film lithium tantalate (TFLT) pyroelectric detectors. Terahertz Technology and Applications V, San Francisco, 2012: 174-182. [14] YU J Y, RUAN Z L, XUE Y, et al.Tunable and stable micro-ring resonator based on thin-film lithium tantalate. APL Photonics, 2024, 9(3): 036115. [15] XIAO X F, SI J S, LIANG S J, et al.Preparation, properties, and applications of near stoichiometric lithium tantalate crystals. Crystals, 2023, 13(7): 1031. [16] WANG C L, LI Z H, RIEMENSBERGER J, et al.Lithium tantalate photonic integrated circuits for volume manufacturing. Nature, 2024, 629(8013): 784. [17] MONDAL R, HASAN M A M, BAIK J M, et al. Advanced pyroelectric materials for energy harvesting and sensing applications. Materials Today, 2023, 66: 273. [18] LIU Z, LU T, DONG X L, et al.Ferroelectric ceramics for pyroelectric detection applications: a review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(2): 242. [19] HE Y W, WONG Y P, LIANG Q, et al.Double busbar structure for transverse energy leakage and resonance suppression in surface acoustic wave resonators using 42°YX-lithium tantalate thin plate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(3): 1112. [20] WANG C L, FANG D Y, ZHANG J Y, et al.Ultrabroadband thin-film lithium tantalate modulator for high-speed communications. Optica, 2024, 11(12): 1614. [21] GORISSE M, DROUIN A, SINQUIN Y, et al.Oriented single-crystal LiTaO3 thin film on silicon for high performances SAW components. 2018 IEEE International Ultrasonics Symposium (IUS), Glasgow, 2018: 1-4. [22] JIA Y C, WANG L, CHEN F.Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Applied Physics Reviews, 2021, 8: 011307. [23] WU Z L, WU S X, QIAN H Y, et al.Comparative study of SH-mode surface acoustic wave resonators on lithium tantalate with silicon and silicon carbide substrates. IEEE Transactions on Electron Devices, 2024, 71(11): 7022. [24] WANG H H, CUI A, CHEN B, et al.Thin-film lithium tantalate modulator operating at high optical power. ACS Photonics, 2025, 12(10): 5345. [25] FANG M H, XIE Y N, XUE F Q, et al.Optical colorimetric LiTaO3 wafers for high-precision lithography on frequency control of SAW devices. Photonics Research, 2024, 12(2): 341. [26] HANG W, WEI L Q, DEBELA T T, et al.Crystallographic orientation effect on the polishing behavior of LiTaO3 single crystal and its correlation with strain rate sensitivity. Ceramics International, 2022, 48(6): 7766. [27] WANG M, WU R B, LIN J T, et al.Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Engineering, 2019, 1(1): e9. [28] GENG W P, YANG X Y, XUE G, et al.Integration technology for wafer-level LiNbO3 single-crystal thin film on silicon by polyimide adhesive bonding and chemical mechanical polishing. Nanomaterials, 2021, 11(10): 2554. [29] KANE S R, WHATMORE R W, SINGH M N, et al.Characterizing pyroelectric detectors for quantitative synchrotron radiation measurements. Sensors and Actuators A: Physical, 2025, 387: 116406. [30] PRAFUL P, BAILEY C.Warpage in wafer-level packaging: a review of causes, modelling, and mitigation strategies. Frontiers in Electronics, 2025, 5: 1515860. [31] 刘宾, 苗卫朋, 杨威, 等. 钽酸锂晶圆减薄用超细金刚石陶瓷砂轮的制备与表征. 超硬材料工程, 2025, 37(2): 1. [32] LIANG Z Q, LI S B, LIU Z J, et al.High responsivity of pyroelectric infrared detector based on ultra-thin (10 μm) LiTaO3. Journal of Materials Science: Materials in Electronics, 2015, 26: 5400. [33] SCHOSSIG M, NORKUS V, GERLACH G.Dielectric and pyroelectric properties of ultrathin, monocrystalline lithium tantalate. Infrared Physics & Technology, 2014, 63: 35. [34] ZHANG J.High precision wafer thinning using ultra-low-TTV glass carrier and novel temporary bonding. 2023 IEEE 25th Electronics Packaging Technology Conference (EPTC), Singapore, 2023: 580-583. [35] ZHU Y X, YU Z K, WAN Q.Large-size functional wafer temporary bonding and thinning. Journal of Inorganic Materials, 2025, 40(12): 1443. [36] BRUEL M.Silicon on insulator material technology. Electronics Letters, 1995, 31(14): 1201. [37] BRUEL M.Application of hydrogen ion beams to silicon on insulator material technology. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 108(3): 313. [38] BRUEL M.The history, physics, and applications of the smart-cut® process. MRS Bulletin, 1998, 23(12): 35. [39] WAN Q, WANG L W, LIU W L, et al.Investigation of H+ and B+/H+ implantation in LiTaO3 single-crystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 184(4): 531. [40] MORICEAU H, MAZEN F, BRALEY C, et al.Smart Cut™: review on an attractive process for innovative substrate elaboration. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012, 277: 84. [41] LUO J R, LUO W B, ZHANG K S, et al.High specific detectivity infrared detector using crystal ion slicing transferred LiTaO3 single-crystal thin films. Sensors and Actuators A: Physical, 2019, 300: 111650. [42] TAUZIN A, DECHAMP J, MADEIRA F, et al.3-inch single-crystal LiTaO3 films onto metallic electrode using Smart Cut™ technology. Electronics Letters, 2008, 44(13): 822. [43] LIU W L, ZHAN D, MA X B, et al.Fabrication of single-crystalline LiTaO3 film on silicon substrate using thin film transfer technology. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2008, 26(1): 206. [44] WAN L M, WU C Y, YUAN Y, et al.Enhanced surface blistering efficiency of H+ implanted lithium tantalate by chemical reduction modification. Applied Surface Science, 2023, 622: 156978. [45] ZHANG K S, LUO W B, HUANG S T, et al.Effects of rapid thermal annealing parameters on crystal ion slicing-fabricated LiTaO3 thin film. Applied Physics A, 2021, 127(6): 468. [46] PANG L L, WANG Z G, SUN J R, et al.Evolution of optical absorption and strain in LiTaO3 crystal implanted by energetic He-ion. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 354: 301. [47] PANG L L, WANG Z G, JIN Y F, et al.The modification of LiTaO3 crystal by low-energy He-ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012, 290: 54. [48] MA C D, LU F, XU B, et al.Visualized strain profile in the process of crystal ion slicing of LiTaO3. Journal of Physics D: Applied Physics, 2016, 49(20): 205301. [49] 陈哲明, 丁雨憧, 邹少红, 等. 硅基钽酸锂异质晶圆键合工艺研究. 人工晶体学报, 2024, 53(4): 634. [50] YAN Y Q, HUANG K, ZHOU H Y, et al.Wafer-scale fabrication of 42° rotated Y-cut LiTaO3-on-insulator (LTOI) substrate for a SAW resonator. ACS Applied Electronic Materials, 2019, 1(8): 1660. [51] LI M, XIA X, LI K P, et al.High performance SAW resonators using LiTaO3/SiO2/4H-SiC multilayer substrate. IEEE Electron Device Letters, 2022, 43(10): 1772. [52] ZHANG D, WU H T, BOWEN C R, et al.Recent advances in pyroelectric materials and applications. Small, 2021, 17(51): 2103960. [53] WHATMORE R W.Pyroelectric devices and materials. Reports on Progress in Physics, 1986, 49(12): 1335. [54] LI X Y, LU S G, CHEN X Z, et al.Pyroelectric and electrocaloric materials. Journal of Materials Chemistry C, 2013, 1(1): 23. [55] LIANG T, LIN S J, LI Y, et al. Research on the effect of mechanical processing on lithium tantalate crystal pyroelectric coefficient. Advanced Materials Research, 2013, 834/835/836: 880. [56] NORKUS V.Pyroelectric infrared detectors based on lithium tantalate: state of art and prospects. Detectors and Associated Signal Processing, 2004, 5251: 121. [57] SOKOLL T, NORKUS V, GERLACH G.Ion beam etching of lithium tantalate and its application for pyroelectric linear arrays. Surface and Coatings Technology, 1997, 97(1/2/3): 469. [58] ZHANG K S, LUO W B, HUANG S T, et al.Wavelength-selective infrared detector fabricated by integrating LiTaO3 with a metamaterial perfect absorber. Sensors and Actuators A: Physical, 2020, 313: 112186. [59] ZENG X H, LUO W B, ZHANG K S, et al.Wafer-scale fabrication of silicon-based LiTaO3 pyroelectric infrared detectors by bonding and thinning technology. IEEE Sensors Journal, 2022, 22(18): 17721. [60] ALEKSANDROVA M, JAGTAP C, KADAM V, et al.An overview of microelectronic infrared pyroelectric detector. Engineered Science, 2021, 16: 82. [61] TIAN J L.An overview of pyroelectric photodetector: photoresponse mechanisms and applications. AIP Advances, 2023, 13(5): 050701. [62] NORKUS V, CHVEDOV D, GERLACH G, et al.Performance improvements for pyroelectric infrared detectors. Infrared Technology and Applications XXXII, Orlando, 2006, 6206: 974-984. [63] ZHANG W D, TAN Q L, LIU J, et al.Two-channel IR gas sensor with two detectors based on LiTaO3 single-crystal wafer. Optics & Laser Technology, 2010, 42(8): 1223. [64] NORKUS V, GERLACH G, HOFMANN G.High-resolution pyroelectric linear arrays based on LiTaO3. Infrared Technology and Applications XXVII, Orlando, 2001, 4369: 322-331. [65] NORKUS V, HOFMANN G, MOEHLING S, et al.Pyroelectric IR single-element detectors and arrays based on LiNbO3 and LiTaO3. Infrared Detectors and Focal Plane Arrays II, Orlando, 1992, 1685: 155-163. [66] HOLDEN A J.Applications of pyroelectric materials in array-based detectors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(9): 1981. [67] WANG J, GOU J, LI W Z.Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film. AIP Advances, 2014, 4(2): 027106. [68] SHARMA A, GUPTA V, SON J G, et al.Linearity of fast and highly sensitive LiTaO3 pyroelectric detectors in the terahertz range. IEEE Transactions on Terahertz Science and Technology, 2024, 14(6): 823. [69] MITMIT C, GOLDENBERG E, TAN E M M. Infrared wavelength-specific gas sensing with pyroelectricity at room temperature. Sensors and Actuators A: Physical, 2023, 351: 114164. [70] FAN K B, STENGER V, PADILLA W J.Pyroelectric metamaterial millimeter-wave detector. Applied Physics Letters, 2022, 121(2): 021701. |
| [1] | 余升阳, 苏海军, 姜浩, 余明辉, 姚佳彤, 杨培鑫. 激光增材制造超高温氧化物陶瓷孔隙缺陷形成及抑制研究进展[J]. 无机材料学报, 2025, 40(9): 944-956. |
| [2] | 刘江平, 管鑫, 唐振杰, 朱文杰, 罗永明. 含氮挥发性有机化合物催化氧化的研究进展[J]. 无机材料学报, 2025, 40(9): 933-943. |
| [3] | 肖晓琳, 王玉祥, 谷佩洋, 朱圳荣, 孙勇. 二维无机材料调控病损皮肤组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 860-870. |
| [4] | 马景阁, 吴成铁. 无机生物材料用于毛囊和毛发再生的研究[J]. 无机材料学报, 2025, 40(8): 901-910. |
| [5] | 张洪健, 赵梓壹, 吴成铁. 无机生物材料调控神经细胞功能及神经化组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 849-859. |
| [6] | 艾敏慧, 雷波. 微纳米生物活性玻璃: 功能化设计与血管化皮肤再生[J]. 无机材料学报, 2025, 40(8): 921-932. |
| [7] | 王宇彤, 常江, 徐合, 吴成铁. 硅酸盐生物陶瓷/玻璃促创面修复的研究进展:作用、机制和应用方式[J]. 无机材料学报, 2025, 40(8): 911-920. |
| [8] | 马文平, 韩雅卉, 吴成铁, 吕宏旭. 无机活性材料在类器官研究领域的应用[J]. 无机材料学报, 2025, 40(8): 888-900. |
| [9] | 罗晓民, 乔志龙, 刘颍, 杨晨, 常江. 无机生物活性材料调控心肌再生的研究进展[J]. 无机材料学报, 2025, 40(8): 871-887. |
| [10] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
| [11] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
| [12] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
| [13] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
| [14] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
| [15] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||