宋坤洁, 解荣军
收稿日期:2025-09-23
修回日期:2025-11-27
通讯作者:
解荣军, 教授. E-mail: rjxie@xmu.edu.cn
作者简介:宋坤洁(2000-), 男, 博士研究生. E-mail: songkj@stu.xmu.edu.cn
基金资助:SONG Kunjie, XIE Rongjun
Received:2025-09-23
Revised:2025-11-27
Contact:
XIE Rongjun, professor. E-mail: rjxie@xmu.edu.cn
About author:SONG Kunjie (2000-), male, PhD candidate. E-mail: songkj@stu.xmu.edu.cn
Supported by:摘要: 发光材料是一类重要的战略性先进电子材料,在新型显示、固态照明、生物医学和传感探测等领域展现出广阔的应用前景。然而,实际应用对材料性能提出多维度严格要求,传统依赖经验与试错的研发模式周期长、成本高,严重制约高性能新材料的开发进程。近年来,机器学习(Machine Learning, ML)的快速发展为该领域瓶颈问题提供了新的解决途径。ML通过构建“组成-结构-性能”之间的复杂映射关系,实现对候选材料的高通量虚拟筛选,提升研发效率。此外,ML的特征重要性分析,揭示影响发光性能的关键物理化学因素,为理解材料构效关系提供新的理论支持。本文系统阐述了ML驱动发光材料研发的流程框架,重点包括数据准备、特征工程、模型选择、模型评估与模型应用等关键环节,并深入探讨了各阶段在发光材料研究中的特殊考量与应对策略。在此基础上,本文还综述了ML在荧光粉关键性能预测方面的最新研究进展,包括发射波长、半峰宽(FWHM)、热稳定性、荧光寿命、质心位移及工艺优化等关键指标。最后,针对当前研究中存在的挑战,如可靠数据匮乏、材料性质复杂及参数难量化等问题进行了梳理,并展望了未来人工智能(Artificial Intelligence, AI)技术在发光材料研究中深度融合的发展趋势,以期为推动荧光粉材料领域“AI for Science”新范式的建立提供有益参考。
中图分类号:
宋坤洁, 解荣军. 机器学习驱动新型发光材料的研究进展[J]. 无机材料学报, DOI: 10.15541/jim20250368.
SONG Kunjie, XIE Rongjun. Research Advances in Machine Learning-driven Development of Novel Luminescent Materials[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250368.
| [1] XIE R J, HIROSAKI N.Silicon-based oxynitride and nitride phosphors for white LEDs—A review. Science and Technology of Advanced Materials, 2016, 8(7-8): 588. [2] XIE R J, HIROSAKI N, SAKUMA K, et al.Eu2+-doped Ca-α-SiAlON: A yellow phosphor for white light-emitting diodes. Applied Physics Letters, 2004, 84(26): 5404. [3] WANG P, WANG Y, LI Z, et al.Enhanced stability and brightness through co‐substitution: promoting plant growth with green‐excited deep red phosphor Ca1‐zSrzLi1‐xMg2xAl3‐xN4:yEu2+. Advanced Materials, 2024, 37(4): 2414578. [4] LIU S, LI L, QIN X, et al.Achieving ultra‐broadband sunlight‐like emission in single‐phase phosphors: the interplay of structure and luminescence. Advanced Materials, 2024, 36(38): 2406164. [5] LIU S, YANG X, DU R, et al.Single‐grain high‐efficiency full‐visible‐spectrum white emitters. Angewandte Chemie International Edition, 2025, 64(19): e202502100. [6] LI S, XIA Y, AMACHRAA M, et al.Data-driven discovery of full-visible-spectrum phosphor. Chemistry of Materials, 2019, 31(16): 6286. [7] PUST P, WEILER V, HECHT C, et al.Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material. Nature Materials, 2014, 13(9): 891. [8] PUST P, SCHMIDT P J, SCHNICK W.A revolution in lighting. Nature Materials, 2015, 14(5): 454. [9] GEORGE N C, DENAULT K A, SESHADRI R.Phosphors for solid-state white lighting. Annual Review of Materials Research, 2013, 43(1): 481. [10] MORGAN, P, MONICA H, NORMAN B, et al.2022 Solid-state lighting R&D opportunities. US department of energy office of scientific and technical information.(2022-02-02) [2025-11-26]. https://doi.org/10.2172/1862626. [11] HARIYANI S, SóJKA M, SETLUR A, et al. A guide to comprehensive phosphor discovery for solid-state lighting. Nature Reviews Materials, 2023, 8(11): 759. [12] TAKEDA T, KOYAMA Y, IKENO H, et al.Exploring new useful phosphors by combining experiments with machine learning. Science and Technology of Advanced Materials, 2024, 25(1): 2421761. [13] WANG X J, WANG L, TAKEDA T, et al.Blue-emitting Sr3Si8-xAlxO7+xN8-x:Eu2+ discovered by a single-particle-diagnosis approach: crystal structure, luminescence, scale-up synthesis, and its abnormal thermal quenching behavior. Chemistry of Materials, 2015, 27(22): 7689. [14] PARK W B, SINGH S P, KIM M, et al.Combinatorial screening of luminescent and structural properties in a Ce3+-doped Ln-Al-Si-O-N (Ln = Y, La, Gd, Lu) system: the discovery of a novel Gd3Al3+xSi3-xO12+xN2-x:Ce3+ phosphor. Inorganic Chemistry, 2015, 54(4): 1829. [15] PARK W B, SINGH S P, SOHN K S.Discovery of a phosphor for light emitting diode applications and its structural determination, Ba(Si,Al)5(O,N)8:Eu2+. Journal of the American Chemical Society, 2014, 136(6): 2363. [16] ZHAO M, LIAO H, MOLOKEEV M S, et al.Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition. Light: Science & Applications, 2019, 8(1): 38. [17] WANG Z, HA J, KIM Y H, et al.Mining unexplored chemistries for phosphors for high-color-quality white-light-emitting diodes. Joule, 2018, 2(5): 914. [18] LI S, AMACHRAA M, CHEN C, et al.Efficient near-infrared phosphors discovered by parametrizing the Eu(II) 5d-to-4f energy gap. Matter, 2022, 5(6): 1924. [19] BUTLER K T, DAVIES D W, CARTWRIGHT H, et al.Machine learning for molecular and materials science. Nature, 2018, 559(7715): 547. [20] XIE T, GROSSMAN J C.Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Physical Review Letters, 2018, 120(14): 145301. [21] AGRAWAL A, CHOUDHARY A.Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Materials, 2016, 4(5): 053208. [22] PARK C, LEE J-W, KIM M, et al.A data-driven approach to predicting band gap, excitation, and emission energies for Eu2+-activated phosphors. Inorganic Chemistry Frontiers, 2021, 8(21): 4610. [23] MOLOKEEV M S, SU B, ALEKSANDROVSKY A S, et al.Machine learning analysis and discovery of zero-dimensional ns2 metal halides toward enhanced photoluminescence quantum yield. Chemistry of Materials, 2022, 34(2): 537. [24] MING H, ZHOU Y, MOLOKEEV M S, et al.Machine-learning-driven discovery of Mn4+-doped red-emitting fluorides with short excited-state lifetime and high efficiency for mini light-emitting diode displays. ACS Materials Letters, 2024, 6(5): 1790. [25] ZHUO Y, TEHRANI A, OLIYNYK A, et al.Identifying an efficient, thermally robust inorganic phosphor host via machine learning. Nature Communications, 2018, 9(1): 4377. [26] WANG Y, TANG W, ZHANG C, et al.Structure‐based machine learning enables discovery of Mn4+‐activated red‐light fluorides for ultrawide‐gamut mini‐light‐emitting diodes. Advanced Functional Materials, 2023, 34(14): 2313490. [27] BI H, JIANG J, CHEN J, et al.Machine learning prediction of quantum yields and wavelengths of aggregation-induced emission molecules. Materials, 2024, 17(7): 17071664. [28] PILANIA G, GUBERNATIS J E, LOOKMAN T. Multi-fidelity machine learning models for accurate bandgap predictions of solids. Computational Materials Science, 2017, 129: 156-. [29] YUAN H, QI L, PARIS M, et al.Machine learning guided design of single-phase hybrid lead halide white phosphors. Advanced Science, 2021, 8(19): 2101407. [30] LI H, ZHENG H, YUE T, et al.Machine learning-accelerated discovery of heat-resistant polysulfates for electrostatic energy storage. Nature Energy, 2024, 10(1): 90. [31] YANG S, ZANG B, XIANG M, et al.Designing Fe-based amorphous alloys with both ultra-high magnetization and ultra-low coercivity through artificial intelligence. Advanced Functional Materials, 2025, 35(30): 2425588. [32] JIA X, DENG Y, BAO X, et al.Unsupervised machine learning for discovery of promising half-Heusler thermoelectric materials. npj Computational Materials, 2022, 8: 34. [33] ISAYEV O, OSES C, TOHER C, et al.Universal fragment descriptors for predicting properties of inorganic crystals. Nature Communications, 2017, 8: 15679. [34] WARD L, DUNN A, FAGHANINIA A, et al.Matminer: An open source toolkit for materials data mining. Computational Materials Science, 2018, 152: 60. [35] HIMANEN L, JäGER M O J, MOROOKA E V, et al. DScribe: Library of descriptors for machine learning in materials science. Computer Physics Communications, 2020, 247: 106949. [36] HEIDAR-ZADEH F, RICHER M, FIAS S, et al.An explicit approach to conceptual density functional theory descriptors of arbitrary order. Chemical Physics Letters, 2016, 660: 307. [37] BENTO P A, HERSEY A, FELIX E, et al.An open source chemical structure curation pipeline using RDKit. Journal of Cheminformatics, 2020, 12: 51. [38] ONG S P, RICHARDS W D, JAIN A, et al.Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Computational Materials Science, 2013, 68: 314. [39] JAIN A, ONG S P, HAUTIER G, et al.Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 2013, 1(1): 011002. [40] CURTAROLO S, SETYAWAN W, HART G L W, et al. AFLOW: An automatic framework for high-throughput materials discovery. Computational Materials Science, 2012, 58: 218. [41] DRAXL C, SCHEFFLER M.The NOMAD laboratory: from data sharing to artificial intelligence. Journal of Physics: Materials, 2019, 2(3): 036001. [42] HELLENBRANDT M.The inorganic crystal structure database (ICSD)—present and future. Crystallography Reviews, 2014, 10(1): 17. [43] GRAŽULIS S, DAŠKEVIČ A, MERKYS A, et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Research, 2012, 40(D1): D420. [44] MORGAN D, JACOBS R.Opportunities and challenges for machine learning in materials science. Annual Review of Materials Research, 2020, 50(1): 71. [45] LIU Y, YANG Z, ZOU X, et al. Data quantity governance for machine learning in materials science. National Science Review, 2023, 10(7): nwad125. [46] HAGHIGHATLARI M, LI J, HEIDAR-ZADEH F, et al.Learning to make chemical predictions: the interplay of feature representation, data, and machine learning methods. Chem, 2020, 6(7): 1527. [47] GHIRINGHELLI L M, VYBIRAL J, LEVCHENKO S V, et al.Big data of materials science: critical role of the descriptor. Physical Review Letters, 2015, 114(10): 105503. [48] HE J, LI J, LIU C, et al.Machine learning identified materials descriptors for ferroelectricity. Acta Materialia, 2021, 209(1): 116815. [49] YıLMAZ B, YıLDıRıM R. Critical review of machine learning applications in perovskite solar research. Nano Energy, 2021, 80: 105546. [50] JO B, CHEN W, JUNG H S.Comprehensive review of advances in machine-learning-driven optimization and characterization of perovskite materials for photovoltaic devices. Journal of Energy Chemistry, 2025, 101: 298. [51] PEARSON K. Mathematical contributions to the theory of evolution.—On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society, 1897, 60: 489. [52] WANG A Y-T, MURDOCK R J, KAUWE S K, et al. Machine learning for materials scientists: an introductory guide toward best practices. Chemistry of Materials, 2020, 32(12): 4954. [53] LI C, HAO H, XU B, et al.Improved physics-based structural descriptors of perovskite materials enable higher accuracy of machine learning. Computational Materials Science, 2021, 198: 110714. [54] LAI S, ZHAO M, QIAO J, et al.Data-driven photoluminescence tuning in Eu2+-doped phosphors. The Journal of Physical Chemistry Letters, 2020, 11(14): 5680. [55] KARPOVICH C, PAN E, OLIVETTI E A.Deep reinforcement learning for inverse inorganic materials design. npj Computational Materials, 2024, 10: 287. [56] HE Z, THüRER M, ZHOU W. The use of reinforcement learning for material flow control: An assessment by simulation. International Journal of Production Economics, 2024, 274: 109312. [57] SHEN Z H, LIU H X, SHEN Y, et al.Machine learning in energy storage materials. Interdisciplinary Materials, 2022, 1(2): 175. [58] JIANG X, FU H, BAI Y, et al.Interpretable machine learning applications: a promising prospect of AI for materials. Advanced Functional Materials, 2025, 35(41): 2507734. [59] SHI Y, ZHANG Y, WEN J, et al.Interpretable machine learning for stability and electronic structure prediction of Janus III-VI van der Waals heterostructures. MGEA-Materials Genome Engineering Advances, 2024, 2(4): e76. [60] YAO Y, HAN D, SPOONER K B, et al.Adapting explainable machine learning to study mechanical properties of 2d hybrid halide perovskites. Advanced Functional Materials, 2024, 35(1): 2411652. [61] DUAN X, LI Y, ZHAO J, et al.Machine learning accelerated discovery of entropy-stabilized oxide catalysts for catalytic oxidation. Journal of the American Chemical Society, 2024, 147(1): 651. [62] HAN Z, XIA S, CHEN Z, et al.Facilitated the discovery of new γ/γ′ Co-based superalloys by combining first principles and machine learning. npj Computational Materials, 2024, 10: 259. [63] WU J, TORRESI L, HU M, et al.Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells. Science, 2024, 386: 1256. [64] CUI C X, SHEN Y, HE J R, et al.Quantitative insight into the electric field effect on CO2 electrocatalysis via machine learning spectroscopy. Journal of the American Chemical Society, 2024, 146(50): 34551. [65] WANG L, XIE R-J, SUEHIRO T, et al.Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chemical Reviews, 2018, 118(4): 1951. [66] XIE R J, HINTZEN H T, JOHNSON D.Optical properties of (oxy)nitride materials: a review. Journal of the American Ceramic Society, 2013, 96(3): 665. [67] XIE R-J, HIROSAKI N, SUEHIRO T, et al.A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes. Chemistry of Materials, 2006, 18(23): 5578. [68] LI Y, NIROSAKI N, XIE R J, et al.Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: structure, photoluminescence, and application in white leds. Chemistry of Materials, 2008, 20(21): 6704. [69] PARK W B, SINGH S P, KIM M, et al.Phosphor informatics based on confirmatory factor analysis. ACS Combinatorial Science, 2015, 17(5): 317. [70] QIAO J, AMACHRAA M, MOLOKEEV M, et al.Engineering of K3YSi2O7 to tune photoluminescence with selected activators and site occupancy. Chemistry of Materials, 2019, 31(18): 7770. [71] QIAO J, ZHOU G, ZHOU Y, et al.Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nature Communications, 2019, 10: 5267. [72] KOYAMA Y, IKENO H, HARADA M, et al.Rapid discovery of new Eu2+-activated phosphors with a designed luminescence color using a data-driven approach. Materials Advances, 2023, 4(1): 231. [73] XU Y, YAMAZAKI M, VILLARS P. Inorganic materials database for exploring the nature of material. Japanese Journal of Applied Physics, 2011, 50(11S): 11RH02. [74] NAKANO H, TANAKA K, MIYAO T, et al.Practical models for predicting the emission peak wavelengths of inorganic phosphors based on stoichiometric information. Chemistry Letters, 2017, 46(10): 1482. [75] Ding C, Li Z-F, Zhang W-J, et al.Machine learning the peak emission wavelength of Mn4+-activated inorganic phosphors. New Journal of Chemistry, 2023, 47(22): 10875. [76] TIAN R, ZHOU T, XIE R J.Spectrally tunable dual-phosphor ceramics for laser lighting. Laser & Photonics Reviews, 2025, 19(13): 2402144. [77] HIROSAKI N, XIE R, KIMOTO K, et al.Characterization and properties of green-emitting β-Sialon:Eu2+ powder phosphors for white light-emitting diodes. Applied Physics Letters, 2005, 86(21): 211905. [78] ZHAO M, YANG Z, NING L, et al.Tailoring of white luminescence in a NaLi3SiO4:Eu2+ phosphor containing broad-band defect-induced charge-transfer emission. Advanced Materials, 2021, 33(29): 2101428. [79] ZHAO M, LIAO H, NING L, et al.Next-generation narrow-band green-emitting RbLi(Li3SiO4)2:Eu2+ phosphor for backlight display application. Advanced Materials, 2018, 30(38): 1802489. [80] LIU S, SONG K, LI S, et al.Machine learning-driven discovery of efficient narrow-band green phosphor for wide-color-gamut backlight displays. Chemical Engineering Journal, 2025, 520: 165719. [81] WANG Z, CHU I H, ZHOU F, et al.Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors. Chemistry of Materials, 2016, 28(11): 4024. [82] KIM M, SINGH S P, LEE J W, et al.Identification of a narrow band red light-emitting phosphor using computational screening of ICSD: its synthesis and optical characterization. Journal of Alloys and Compounds, 2019, 774: 338. [83] TAKEMURA S, KOYAMA Y, NAKANISHI T, et al.Narrow-band phosphor K2ZnP2O7:Eu2+ discovered using local structure similarity. Scripta Materialia, 2022, 215(1): 114686. [84] TAKEMURA S, KOYAMA Y, NAKANISHI T, et al.Narrow-band emitting phosphor Na2Cs2Sr(B9O15)2:Eu2+ discovered from local structure similarity with sulfate phosphor. The Journal of Physical Chemistry Letters, 2022, 13(51): 11878. [85] AMACHRAA M, WANG Z, CHEN C, et al.Predicting thermal quenching in inorganic phosphors. Chemistry of Materials, 2020, 32(14): 6256. [86] KIM Y H, ARUNKUMAR P, KIM B Y, et al.A zero-thermal-quenching phosphor. Nature Materials, 2017, 16(5): 543. [87] ZHENG P, LI S, WANG L, et al.Unique color converter architecture enabling phosphor-in-glass (PIG) films suitable for high-power and high-luminance laser-driven white lighting. ACS Applied Materials & Interfaces, 2018, 10(17): 14930. [88] JIANG L, JIANG X, ZHANG Y, et al.Multiobjective machine learning-assisted discovery of a novel cyan-green garnet: Ce phosphors with excellent thermal stability. ACS Applied Materials & Interfaces, 2022, 14(13): 15426. [89] ZHUO Y, HARIYANI S, ARMIJO E, et al.Evaluating thermal quenching temperature in Eu3+-substituted oxide phosphors via machine learning. ACS Applied Materials & Interfaces, 2019, 12(5): 5244. [90] ZHANG S, LV Y, LI Z, et al.Explainable machine learning-enabled discovery for high-efficiency red-emitting phosphor under data constraints. Chemical Engineering Journal, 2025, 522: 167046. [91] JIANG L, JIANG X, YANG M, et al.Developing and optimizing novel Cr3+-activated inorganic NIR phosphors by combining triple-objective optimization and crystal field engineering. Inorganic Chemistry Frontiers, 2024, 11(2): 487. [92] HUANG L, LOU S, CAO L, et al.Surfactant- and HF-free cation exchange synthesis of highly-efficient nanoscale K2SiF6:Mn4+ and potential usage for high-resolution micro-LED display. ACS Materials Letters, 2022, 4(9): 1716. [93] DORENBOS P.5d-level energies of Ce3+ and the crystalline environment. I. fluoride compounds. Physical Review B, 2000, 62(23): 15640. [94] DORENBOS P.5d-level energies of Ce3+ and the crystalline environment. II. Chloride, bromide, and iodide compounds. Physical Review B,, 2000, 62(23): 15650. [95] DORENBOS P.5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes. Physical Review B, 2001, 64(12): 125117. [96] DORENBOS P.Relation between Eu2+ and Ce3+ f ↔ d-transition energies in inorganic compounds. Journal of Physics: Condensed Matter, 2003, 15(27): 4797. [97] ZHUO Y, HARIYANI S, YOU S, et al.Machine learning 5d-level centroid shift of Ce3+ inorganic phosphors. Journal of Applied Physics, 2020, 128(1): 013104. [98] YUAN H, GéNOIS R, GLAIS E, et al. Machine learning identification of experimental conditions for the synthesis of single-phase white phosphors. Matter, 2021, 4(12): 3967. [99] YUAN W, CHEN G, WANG Z, et al.Empowering generalist material intelligence with large language models. Advanced Materials, 2025, 37(32): 2502771. [100] XU P, MA Y, LU W, et al.Multi-objective optimization in machine learning assisted materials design and discovery. Journal of Materials Informatics, 2025, 5(2): 26. [101] ZHU Q, ZHANG F, HUANG Y, et al.An all-round AI-Chemist with a scientific mind. National Science Review, 2022, 9(10): 190. [102] MALYI O I, SOPIHA K V, PERSSON C, et al.Energy, phonon, and dynamic stability criteria of two-dimensional materials. ACS Applied Materials Interfaces, 2019, 11: 24876. |
| [1] | 余升阳, 苏海军, 姜浩, 余明辉, 姚佳彤, 杨培鑫. 激光增材制造超高温氧化物陶瓷孔隙缺陷形成及抑制研究进展[J]. 无机材料学报, 2025, 40(9): 944-956. |
| [2] | 刘江平, 管鑫, 唐振杰, 朱文杰, 罗永明. 含氮挥发性有机化合物催化氧化的研究进展[J]. 无机材料学报, 2025, 40(9): 933-943. |
| [3] | 肖晓琳, 王玉祥, 谷佩洋, 朱圳荣, 孙勇. 二维无机材料调控病损皮肤组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 860-870. |
| [4] | 马景阁, 吴成铁. 无机生物材料用于毛囊和毛发再生的研究[J]. 无机材料学报, 2025, 40(8): 901-910. |
| [5] | 张洪健, 赵梓壹, 吴成铁. 无机生物材料调控神经细胞功能及神经化组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 849-859. |
| [6] | 艾敏慧, 雷波. 微纳米生物活性玻璃: 功能化设计与血管化皮肤再生[J]. 无机材料学报, 2025, 40(8): 921-932. |
| [7] | 王宇彤, 常江, 徐合, 吴成铁. 硅酸盐生物陶瓷/玻璃促创面修复的研究进展:作用、机制和应用方式[J]. 无机材料学报, 2025, 40(8): 911-920. |
| [8] | 马文平, 韩雅卉, 吴成铁, 吕宏旭. 无机活性材料在类器官研究领域的应用[J]. 无机材料学报, 2025, 40(8): 888-900. |
| [9] | 罗晓民, 乔志龙, 刘颍, 杨晨, 常江. 无机生物活性材料调控心肌再生的研究进展[J]. 无机材料学报, 2025, 40(8): 871-887. |
| [10] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
| [11] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
| [12] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
| [13] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
| [14] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
| [15] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||