无机材料学报

• 综述 • 上一篇    下一篇

机器学习驱动新型发光材料的研究进展

宋坤洁, 解荣军   

  1. 厦门大学 材料学院,厦门 361005
  • 收稿日期:2025-09-23 修回日期:2025-11-27
  • 通讯作者: 解荣军, 教授. E-mail: rjxie@xmu.edu.cn
  • 作者简介:宋坤洁(2000-), 男, 博士研究生. E-mail: songkj@stu.xmu.edu.cn
  • 基金资助:
    国家重点研发计划 (2022YFB3503800, 2022YFB3503801)

Research Advances in Machine Learning-driven Development of Novel Luminescent Materials

SONG Kunjie, XIE Rongjun   

  1. College of Materials, Xiamen University, Xiamen 361005, China
  • Received:2025-09-23 Revised:2025-11-27
  • Contact: XIE Rongjun, professor. E-mail: rjxie@xmu.edu.cn
  • About author:SONG Kunjie (2000-), male, PhD candidate. E-mail: songkj@stu.xmu.edu.cn
  • Supported by:
    National Key R&D Program of China (2022YFB3503800, 2022YFB3503801)

摘要: 发光材料是一类重要的战略性先进电子材料,在新型显示、固态照明、生物医学和传感探测等领域展现出广阔的应用前景。然而,实际应用对材料性能提出多维度严格要求,传统依赖经验与试错的研发模式周期长、成本高,严重制约高性能新材料的开发进程。近年来,机器学习(Machine Learning, ML)的快速发展为该领域瓶颈问题提供了新的解决途径。ML通过构建“组成-结构-性能”之间的复杂映射关系,实现对候选材料的高通量虚拟筛选,提升研发效率。此外,ML的特征重要性分析,揭示影响发光性能的关键物理化学因素,为理解材料构效关系提供新的理论支持。本文系统阐述了ML驱动发光材料研发的流程框架,重点包括数据准备、特征工程、模型选择、模型评估与模型应用等关键环节,并深入探讨了各阶段在发光材料研究中的特殊考量与应对策略。在此基础上,本文还综述了ML在荧光粉关键性能预测方面的最新研究进展,包括发射波长、半峰宽(FWHM)、热稳定性、荧光寿命、质心位移及工艺优化等关键指标。最后,针对当前研究中存在的挑战,如可靠数据匮乏、材料性质复杂及参数难量化等问题进行了梳理,并展望了未来人工智能(Artificial Intelligence, AI)技术在发光材料研究中深度融合的发展趋势,以期为推动荧光粉材料领域“AI for Science”新范式的建立提供有益参考。

关键词: 机器学习, 荧光粉, 人工智能, 数据驱动, 发光材料, AI for Science, 综述

Abstract: Phosphor materials are essential functional components in modern optoelectronics, playing a crucial role in next-generation displays, solid-state lighting, biomedical imaging, and sensing applications. However, the properties of materials are stringently required in multiple dimensions for practical applications. The conventional trial-and-error approach impedes the development of novel high-performance phosphors due to its long cycles and high costs. In recent years, the rapidly advancing machine learning (ML) methodology presents an innovative solution to addressing these bottlenecks. It not only dramatically accelerates the high-throughput virtual screening of candidate materials by establishing complex mapping among “composition-structure-property”, substantially improving efficiency, but also provides novel theoretical insights into structure-property correlations through algorithm-derived importance weights. This review systematically outlines the methodological framework for ML-driven phosphor development, covering key stages including data preparation, feature engineering, model selection, model evaluation and application. It further discusses specific considerations and corresponding strategies for each stage of the process. Subsequently, it reviews recent research progress in applying ML to predict key phosphor properties, encompassing critical metrics such as emission wavelength, full width at half-maximum (FWHM), thermal stability, fluorescence lifetime, centroid shift, and process optimization. Finally, this review addresses existing challenges in current research, such as scarcity of reliable data, complexity of materials properties, and difficulties in parameter quantification. The article concludes by outlining future development trends for the deep integration of artificial intelligence (AI) technology in luminescent materials research, aiming to provide a valuable reference for promoting the establishment of an “AI for Science” paradigm in the field of phosphor materials.

Key words: machine learning, phosphors, artificial intelligence, data-driven, luminescent materials, AI for science, review

中图分类号: