[1] ALIVISATOS A P.Semiconductor clusters, nanocrystals, and quantum dots.Science, 1996, 271(5251): 933. [2] EFROS A L, BRUS L E.Nanocrystal quantum dots: from discovery to modern development.ACS Nano, 2021, 15(4): 6192. [3] BRUS L E.Electron-electron and electron‐hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. The Journal of Chemical Physics 1984, 80(9): 4403. [4] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307: 538. [5] WEGNER K D, HILDEBRANDT N.Quantum dots: bright and versatilein vitro and in vivo fluorescence imaging biosensors. Chemical Society Reviews, 2015, 44(14): 4792. [6] LIU H, WANG Z, LIU S, et al. Single-virus tracking with quantum dots in live cells.Nature Protocols 2022, 18(2): 458. [7] OU W, ZHU K, LU X, et al. Alloyed geometric structure strategy enables high-quality water-soluble quantum dots for ultrasensitive fluorescence immunoassay. Chemical Engineering Journal, 2024, 502: 157799. [8] LIU Z, HOU X, YOU H, et al. Surface copassivation strategy for developing water-soluble inp colloidal quantum dots with high luminescence and suppressed blinking. Journal of the American Chemical Society, 2025, 147(6): 4778. [9] DING C, CHENG S, ZHANG C, et al. Ratiometric upconversion luminescence nanoprobe with near-infrared Ag2S nanodots as the energy acceptor for sensing and imaging of pH in vivo. Analytical Chemistry, 2019, 91(11): 7181. [10] HOU S L, DONG J, TANG M H, et al. Triple-interpenetrated lanthanide-organic framework as dual wave bands self-calibrated ph luminescent probe. Analytical Chemistry, 2019, 91(8): 5455. [11] STEINEGGER A, WOLFBEIS O S, BORISOV S M.Optical sensing and imaging of pH values: spectroscopies, materials, and applications.Chemical Reviews, 2020, 120(22): 12357. [12] YANG R, HE X, NIU G, et al. A single fluorescent pH probe for simultaneous two-color visualization of nuclei and mitochondria and monitoring cell apoptosis. ACS Sensors, 2021, 6(4): 1552. [13] LYAGIN I, MASLOVA O, STEPANOV N, et al. Reassessing of enzymes degrading mycotoxins at acidic pH. International Biodeterioration & Biodegradation, 2025, 198: 105994. [14] RUIZ-GUERRERO C D, ESTRADA-OSORIO D V, GUTIéRREZ A, et al. Novel cobalt-based aerogels for uric acid detection in fluids at physiological pH. Biosensors and Bioelectronics, 2025, 267: 116850. [15] CHEN H, YE Z, SUN L, et al. Synthesis of chitosan-based micelles for pH responsive drug release and antibacterial application. Carbohydrate Polymers, 2018, 189: 65. [16] KAY E R, LEE J, NOCERA D G, et al. Conformational control of energy transfer: a mechanism for biocompatible nanocrystal-based sensors. Angewandte Chemie International Edition, 2012, 52(4): 1165. [17] ORTE A, ALVAREZ-PEZ J M, RUEDAS-RAMA M J. fluorescence lifetime imaging microscopy for the detection of intracellular ph with quantum dot.ACS Nano, 2013, 7(7): 6387. [18] PAEK K, YANG H, LEE [J], et al. Efficient colorimetric pH sensor based on responsive polymer quantum dot integrated graphene oxide. ACS Nano, 2014, 8(3): 2848. [19] SUSUMU K, FIELD L D, OH E, et al. Purple-, blue-, and green-emitting multishell alloyed quantum dots: synthesis, characterization, and application for ratiometric extracellular pH sensing. Chemistry of Materials, 2017, 29(17): 7330. [20] MEDINTZ I L, STEWART M H, TRAMMELL S A, et al. Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nature Materials, 2010, 9(8): 676. [21] LI D, XU H, LI D, et al. p-Aminothiophenol-coated CdSe/ZnS quantum dots as a turn-on fluorescent probe for pH detection in aqueous media. Talanta, 2017, 166: 54. [22] ZHOU J, ZHU M, MENG R, et al. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. Journal of the American Chemical Society, 2017, 139(46): 16556. [23] HOU X, KANG J, QIN H, et al. Engineering Auger recombination in colloidal quantum dots via dielectric screening. Nature Communications, 2019, 10: 1750. [24] HOU X, QIN H, PENG X.Enhancing dielectric screening for Auger suppression in CdSe/CdS quantum dots by epitaxial growth of ZnS shell.Nano Letters, 2021, 21(9): 3871. [25] SNEE P T, SOMERS R C, NAIR G, et al. a ratiometric cdse zns nanocrystal pH sensor. Journal of the American Chemical Society, 2006, 128: 13320. [26] SYKORA M, PETRUSKA M A, ALSTRUM-ACEVEDO [J], et al. Photoinduced charge transfer between CdSe nanocrystal quantum dots and Ru-polypyridine complexes. Journal of the American Chemical Society, 2006, 128: 9984. [27] MEDINTZ I L, PONS T, TRAMMELL S A, et al. Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge. Journal of the American Chemical Society, 2008, 130: 16745. [28] SCHWABACHER J C, KODAIMATI M S, WEISS E A.Origin of the pH dependence of emission of aqueous dihydrolipoic acid-capped PbS quantum dots.The Journal of Physical Chemistry C, 2019, 123(28): 17574. [29] JI X, PALUI G, AVELLINI T, et al. On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine. Journal of the American Chemical Society, 2012, 134(13): 6006. [30] BANERJEE S, KAR S, PEREZ J M, et al. Quantum dot based off on probe for detection of glutathione. The Journal of Physical Chemistry C, 2009, 113: 9659. |