无机材料学报

• 研究论文 •    

氧修饰的CoPS3量子点边缘态析氧活性的第一性原理研究

胡学敏1,2, 张行健1, 蒋志豪1, 黄丽雯1, 丁开宁3, 张胜利2   

  1. 1.金陵科技学院 材料工程学院,南京 211169;
    2.南京理工大学 材料科学与工程学院,南京 210094;
    3.福州大学 化学学院,福州 350108
  • 收稿日期:2025-03-03 修回日期:2025-05-18
  • 作者简介:胡学敏(1986-), 女, 博士. E-mail: huxm@jit.edu.cn
  • 基金资助:
    国家自然科学基金(52202247); 中国博士后科学基金(2024M764215); 江苏省大学生创新训练项目(202413573104Y); 金陵科技学院科教融合项目(2024KJRH35); 金陵科技学院科研启动项目(JIT-B-202120); 金陵科技学院孵化项目(jit-fhxm-202115)

First-Principles Study on Oxygen Evolution Reaction Activity of CoPS₃ Quantum Dot Edge States Modified with Oxygen

HU Xuemin1,2, ZHANG Xingjian1, JIANG Zhihao1, HUANG Liwen1, DING Kaining3, ZHANG Shengli2   

  1. 1. School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China;
    2. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    3. College of Chemistry, Fuzhou University, Fuzhou 350108, China
  • Received:2025-03-03 Revised:2025-05-18
  • About author:HU Xuemin (1986-), female, PhD. E-mail: huxm@jit.edu.cn
  • Supported by:
    National Natural Science Foundation of China (52202247); China Postdoctoral Science Foundation (2024M764215); Jiangsu Province College Student Innovation and Entrepreneurship Training Program Project(202413573104Y); Science and Education Integration Project of Jinling Institute of Technology(2024KJRH35); PhD Scientific Research Startup Foundation of the Jinling Institute of Technology (JIT-B-202120); Scientific Research Fund Incubation Project of Jinling Institute of Technology (jit-fhxm-202115).

摘要: 二维CoPS3电催化剂因面内金属活性位点稀缺,用于阳极析氧反应(OER)的动力学过程缓慢,从而限制了整体电解水制氢的效率。针对这一问题,本研究提出通过量子限域效应与边缘化学修饰协同提升催化活性的新策略。首先构建了两种典型的具有高边缘位点密度的CoPS3量子点(CoPS₃-QDs)结构模型,通过结合能和键能计算筛选出热力学稳定的CoPS₃-QDs1结构,其边缘Co2位点较其它边缘位点展现出最优OER活性(速率决定步骤的吉布斯自由能ΔG=1.68 eV)。进一步在CoPS₃-QDs1的Co2位点及邻近硫原子引入氧(O)修饰,构建五种O-CoPS₃-QDs模型。理论计算表明,M4模型(O修饰于S3位点)的过电位(ηOER)仅为0.32 V,较未修饰体系降低29%,且显著优于文献报道的贵金属RuO2催化剂。局域态密度分析进一步揭示,O修饰诱导Co位点附近的电荷重新分布,可以适度吸附氧中间体(*OH、*O、*OOH)。本研究阐明了量子点边缘态修饰在调控电子结构与反应动力学中的关键作用,为设计高效、低成本的OER电催化剂提供了理论依据。

关键词: CoPS3, 量子点, 析氧反应, 边缘态

Abstract: The two-dimensional CoPS3 electrocatalyst suffers from scarcity of in-plane metal active sites, resulting in the slow kinetics for the oxygen evolution reaction (OER) at the anode, thereby limiting the overall efficiency of hydrogen production via water splitting. To address this issue, this study proposes a new strategy to enhance the catalytic activity through the synergistic effects of quantum confinements and edge chemical modification. Initially, two typical CoPS₃ quantum dots (CoPS₃-QDs) structures with high edge-site densities were constructed. Through the binding and bond energy calculations, the thermodynamically stable CoPS₃-QDs1 structure was identified, with its edge Co2 site exhibiting the best OER activity among other edge sites (Gibbs free energy change for the rate-determining step, ΔG=1.68 eV). Subsequently, oxygen modification was introduced at the Co2 site of CoPS₃-QDs1 and its neighboring sulfur atoms, obtaining five O-CoPS₃-QDs models. Theoretical calculations revealed that the M4 model (with O modification at the S3 site) has an overpotential (ηOER) of only 0.32 V, which is 29% lower than that of the unmodified system and significantly better than the noble metal catalyst RuO2 reported in the literature. Partial density of states analysis further revealed that O modification optimized the charge redistribution around the Co sites, enabling moderate adsorptions of oxygen intermediates (*OH, *O, *OOH). This study elucidates the crucial role of edge-site modification of quantum dots in regulating electronic structure and reaction kinetics, providing a theoretical basis for designing efficient and low-cost OER electrocatalysts.

Key words: CoPS3, quantum dot, oxygen evolution reaction, edge states

中图分类号: