[1] LEIJTENS T, STRANKS S D, EPERON G E, et al. Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano, 2014, 8(7): 7147-7155. [2] FU P, SHAN Q, SHANG Y, et al. Perovskite nanocrystals: synthesis, properties and applications. Science Bulletin, 2017, 62(5): 369-380. [3] XING G, MATHEWS N, SUN S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344-347. [4] DONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths >175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967-970. [5] DE WOLF S, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. Journal of Physical Chemistry Letters, 2014, 5(6): 1035-1039. [6] PARK N G.Perovskite solar cells: an emerging photovoltaic technology.Materials Today, 2015, 18(2): 65-72. [7] JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells. Nature, 2021, 592(7854): 381-385. [8] LUO X, DING T, LIU X, et al. Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals. Nano Letters, 2019, 19(1): 338-341. [9] CAI T, WANG J, LI W, et al. Mn2+/Yb3+ codoped CsPbCl3 perovskite nanocrystals with triple-wavelength emission for luminescent solar concentrators. Advanced Science, 2020, 7(18): 2001317. [10] ZHAO H, SUN R, WANG Z, et al. Zero-dimensional perovskite nanocrystals for efficient luminescent solar concentrators. Advanced Functional Materials, 2019, 29(30): 1902262. [11] YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590(7847): 587-593. [12] ZHAO Q, HAZARIKA A, CHEN X, et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nature Communications, 2019, 10(1): 2842. [13] HAO M, BAI Y, ZEISKE S, et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nature Energy, 2020, 5(1): 79-88. [14] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [15] IM J H, LEE C R, LEE J W, et al. 6.5% efficient perovskite quantum- dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088-4093. [16] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2: 591. [17] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643-647. [18] LEI Y, GU L, HE W, et al. Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture. Journal of Materials Chemistry A, 2016, 4(15): 5474-5481. [19] BALL J M, LEE M M, HEY A, et al. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science, 2013, 6(6): 1739-1743. [20] BI D, MOON S J, HÄGGMAN L, et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances, 2013, 3(41): 18762-18766. [21] ZHOU F, LI Z, CHEN H, et al. Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy, 2020, 73: 104757. [22] MENG L, YOU J, GUO T F, et al. Recent advances in the inverted planar structure of perovskite solar cells. Accounts of Chemical Research, 2016, 49(1): 155-165. [23] MARCHIORO A, TEUSCHER J, FRIEDRICH D, et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photonics, 2014, 8(3): 250-255. [24] LINABURG M R, MCCLURE E T, MAJHER J D, et al. Cs1-xRbxPbCl3 and Cs1-xRbxPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites. Chemistry of Materials, 2017, 29(8): 3507-3514. [25] CHO H, KIM Y H, WOLF C, et al. Improving the stability of metal halide perovskite materials and light-emitting diodes. Advanced Materials, 2018, 30(42): 1704587. [26] HAZARIKA A, ZHAO Q, GAULDING E A, et al. Perovskite quantum dot photovoltaic materials beyond the reach of thin films: full-range tuning of A-Site cation composition. ACS Nano, 2018, 12(10): 10327-10337. [27] SMITH I C, HOKE E T, SOLIS-IBARRA D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angewandte Chemie International Edition, 2014, 53(42): 11232-11235. [28] ZHOU N, SHEN Y, LI L, et al. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. Journal of the American Chemical Society, 2018, 140(1): 459-465. [29] XUE J, LEE J W, DAI Z, et al. Surface ligand management for stable FAPbI3 perovskite quantum dot solar Cells. Joule, 2018, 2(9): 1866-1878. [30] JI K, YUAN J, LI F, et al. High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. Journal of Materials Chemistry A, 2020, 8(16): 8104-8112. [31] SHEN X, ZHANG Y, KERSHAW S V, et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Letters, 2019, 19(3): 1552-1559. [32] JIANG Y, YUAN J, NI Y, et al. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule, 2018, 2(7): 1356-1368. [33] CHEN J, JIA D, JOHANSSON E M J, et al. Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy & Environmental Science, 2021, 14(1): 224-261. [34] JEON N J, NOH J H, YANG W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517(7535): 476-480. [35] WANG C, ZHAO D, YU Y, et al. Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis. Nano Energy, 2017, 35: 223-232. [36] YE J, BYRANVAND M M, MARTINEZ C O, et al. Defect passivation in lead-halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells. Angewandte Chemie International Edition, 2021, 60(40): 21636-21660. [37] AKKERMAN Q A, RAINO G, KOVALENKO M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Materials, 2018, 17(5): 394-405. [38] KUMAWAT N K, GUPTA D, KABRA D.Recent advances in metal halide-based perovskite light-emitting diodes.Energy Technology, 2017, 5(10): 1734-1749. [39] CHEN Q, DE MARCO N, YANG Y, et al. Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10(3): 355-396. [40] AZPIROZ J M, MOSCONI E, BISQUERT [J], et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy & Environmental Science, 2015, 8(7): 2118-2127. [41] SWARNKAR A, MIR W J, NAG A.Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X= Cl, Br, I) perovskites?ACS Energy Letters, 2018, 3(2): 286-289. [42] WANG Y, TU J, LI T, et al. Convenient preparation of CsSnI3 quantum dots, excellent stability, and the highest performance of lead- free inorganic perovskite solar cells so far. Journal of Materials Chemistry A, 2019, 7(13): 7683-7690. [43] LIU M, PASANEN H, ALI-LOYTTY H, et al. B-site co-alloying with germanium improves the efficiency and stability of all-inorganic tin-based perovskite nanocrystal solar cells. Angewandte Chemie International Edition, 2020, 59(49): 22117-22125. [44] AHMAD R, NUTAN G V, SINGH D, et al. Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals: synthesis, uniform thin-film fabrication, and application in solution-processed solar cells. Nano Research, 2020, 14(4): 1126-1134. [45] ZHANG J, JIN Z, LIANG L, et al. Iodine-optimized interface for inorganic CsPbI2Br perovskite solar cell to attain high stabilized efficiency exceeding 14%. Advanced Science, 2018, 5(12): 1801123. [46] CHEN K, ZHONG Q, CHEN W, et al. Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Advanced Functional Materials, 2019, 29(24): 1900991. [47] BIAN H, BAI D, JIN Z, et al. Graded bandgap CsPbI2+xBr1-x perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2018, 2(8): 1500-1510. [48] YUAN J, BI C, WANG S, et al. Spray-coated colloidal perovskite quantum dot films for highly efficient solar cells. Advanced Functional Materials, 2019, 29(49): 1906615. [49] LIU C, ZENG Q, ZHAO Y, et al. Surface ligands management for efficient CsPbBrI2 perovskite nanocrystal solar cells. Solar RRL, 2020, 4(5): 2000102. [50] LI J, XU L, WANG T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Advanced Materials, 2017, 29(5): 1603885. [51] CHIBA T, HOSHI K, PU Y J, et al. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Applied Materials & Interfaces, 2017, 9(21): 18054-18060. [52] JIA D, CHEN J, YU M, et al. Dual passivation of CsPbI3 perovskite nanocrystals with amino acid ligands for efficient quantum dot solar cells. Small, 2020, 16(24): 2001772. [53] WHEELER L M, SANEHIRA E M, MARSHALL A R, et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. Journal of the American Chemical Society, 2018, 140(33): 10504-10513. [54] KIM J, CHO S, DINIC F, et al. Hydrophobic stabilizer-anchored fully inorganic perovskite quantum dots enhance moisture resistance and photovoltaic performance. Nano Energy, 2020, 75: 104985. [55] SANEHIRA E M, MARSHALL A R, CHRISTIANS J A, et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Science Advances, 2017, 3(10): eaao4204. [56] LING X, ZHOU S, YUAN J, et al. 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Advanced Energy Materials, 2019, 9(28): 1900721. [57] LING X, YUAN J, ZHANG X, et al. Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Advanced Materials, 2020, 32(26): 2001906. [58] LI F, ZHOU S, YUAN J, et al. Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/ FAPbI3 bilayer structure. ACS Energy Letters, 2019, 4(11): 2571-2578. [59] PARK S Y, SHIM H C.Highly efficient and air-stable heterostructured perovskite quantum dot solar cells using a solid-state cation- exchange reaction.ACS Applied Materials & Interfaces, 2020, 12(51): 57124-57133. [60] XUE J, WANG R, CHEN L, et al. A small-molecule "charge driver" enables perovskite quantum dot solar cells with efficiency approaching 13%. Advanced Materials, 2019, 31(37): 1900111. [61] GAULDING E A, HAO J, KANG H S, et al. Conductivity tuning via doping with electron donating and withdrawing molecules in perovskite CsPbI3 nanocrystal films. Advanced Materials, 2019, 31(27): 1902250. [62] WANG S, BI C, PORTNIAGIN A, et al. CsPbI3/PbSe heterostructured nanocrystals for high-efficiency solar cells. ACS Energy Letters, 2020, 5(7): 2401-2410. [63] DING C, LIU F, ZHANG Y, et al. Photoexcited hot and cold electron and hole dynamics at FAPbI3 perovskite quantum dots/metal oxide heterojunctions used for stable perovskite quantum dot solar cells. Nano Energy, 2020, 67: 104267. [64] WANG Q, JIN Z, CHEN D, et al. µ-Graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Advanced Energy Materials, 2018, 8(22): 1800007. [65] CHEN K, JIN W, ZHANG Y, et al. High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering. Journal of the American Chemical Society, 2020, 142(8): 3775-3783. [66] XIONG L, GUO Y, WEN J, et al. Review on the application of SnO2 in perovskite solar cells. Advanced Functional Materials, 2018, 28(35): 1802757. [67] JIANG Q, ZHANG L, WANG H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3- based perovskite solar cells. Nature Energy, 2016, 2(1): 16177. [68] LIM S, KIM J, PARK J Y, et al. Suppressed degradation and enhanced performance of CsPbI3 perovskite quantum dot solar cells via engineering of electron transport layers. ACS Applied Materials & Interfaces, 2021, 13(5): 6119-6129. [69] SHIVARUDRAIAH S B, NG M, LI C H A, et al. All-inorganic, solution-processed, inverted CsPbI3 quantum dot solar cells with a PCE of 13.1% achieved via a layer-by-layer FAI treatment. ACS Applied Energy Materials, 2020, 3(6): 5620-5627. [70] DING X, CAI M, LIU X, et al. Lead sulfide quantum dots as a bifunctional layer for efficient and stable all-inorganic cesium lead iodide perovskite solar cells. ChemistrySelect, 2019, 4(45): 13143-13148. [71] ZENG Q, ZHANG X, FENG X, et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 2018, 30(9): 1705393. [72] YUAN J, LING X, YANG D, et al. Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule, 2018, 2(11): 2450-2463. [73] ARORA N, DAR M I, HINDERHOFER A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358(6364): 768-771. [74] CHRISTIANS J A, FUNG R C, KAMAT P V.An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide.Journal of the American Chemical Society, 2014, 136(2): 758-764. [75] LIU G, MAZZARO R, WANG Y, et al. High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots. Nano Energy, 2019, 60: 119-126. [76] MCKENNA B, EVANS R C.Towards efficient spectral converters through materials design for luminescent solar devices.Advanced Materials, 2017, 29(28): 1606491. [77] SHU J, ZHANG X, WANG P, et al. Monte-Carlo simulations of optical efficiency in luminescent solar concentrators based on all- inorganic perovskite quantum dots. Physica B: Condensed Matter, 2018, 548: 53-57. [78] ZHAO H, ZHOU Y, BENETTI D, et al. Perovskite quantum dots integrated in large-area luminescent solar concentrators. Nano Energy, 2017, 37: 214-223. [79] ZHAO H, BENETTI D, TONG X, et al. Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots. Nano Energy, 2018, 50: 756-765. [80] COHEN T A, MILSTEIN T J, KROUPA D M, et al. Quantum- cutting Yb3+-doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators. Journal of Materials Chemistry A, 2019, 7(15): 9279-9288. [81] TONG J, LUO J, SHI L, et al. Fabrication of highly emissive and highly stable perovskite nanocrystal-polymer slabs for luminescent solar concentrators. Journal of Materials Chemistry A, 2019, 7(9): 4872-4880. [82] WU J, TONG J, GAO Y, et al. Efficient and stable thin-film luminescent solar concentrators enabled by near-infrared emission perovskite nanocrystals. Angewandte Chemie International Edition, 2020, 132(20): 7812-7816. |