无机材料学报

• •    

基于MPB线性规则设计的PIN-PZN-PZ-PT压电陶瓷结构与性能研究

许晓宇1, 周黎阳2, 冯晓颖1, 王挥2, 阎彬2, 许杰1, 高峰1   

  1. 1.西北工业大学 材料学院,凝固技术国家重点实验室,西安 710072;
    2.中国航天科技集团有限公司第九研究院, 第七七一研究所, 西安 710065
  • 收稿日期:2025-03-08 修回日期:2025-04-13
  • 通讯作者: 高 峰, 教授. E-mail: gaofeng@nwpu.edu.cn
  • 作者简介:许晓宇(1998-), 男, 博士研究生. E-mail: x2584186142@126.com
  • 基金资助:
    国家自然科学基金(52272123)

Microstructure and Properties of PIN-PZN-PZ-PT Piezoelectric Ceramics Designed by MPB Linear Rules

XU Xiaoyu1, ZHOU Liyang2, FENG Xiaoying1, WANG Hui2, YAN Bin2, XU Jie1, GAO Feng1   

  1. 1. State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China;
    2. 771st Research Institute, China Aerospace Science and Technology Corporation Ninth Research Institute, Xi'an 710065, China
  • Received:2025-03-08 Revised:2025-04-13
  • Contact: GAO Feng, professor. E-mail: gaofeng@nwpu.edu.cn
  • About author:XU Xiaoyu (1998-), male, PhD candidate. E-mail: x2584186142@126.com
  • Supported by:
    National Natural Science Foundation of China (52272123)

摘要: 高性能压电陶瓷在现代机电系统中具有不可替代的重要作用,Pb(In₁/₂Nb₁/₂)O₃-Pb(Zn₁/₃Nb₂/₃)O₃-PbZrO₃-PbTiO₃(PIN-PZN-PZ-PT)这类多组分材料因其在准同型相界(MPB)处所呈现出的独特性能而备受关注。本工作通过精细调控PbTiO₃(PT)的含量,设计并优化PIN-PZN-PZ-PT陶瓷的MPB组分,以实现压电性能与热稳定性的双重提升。采用传统固相反应法制备陶瓷,依据线性组合规则预测各组分对MPB位置的贡献,通过X射线衍射(XRD)对晶相结构进行验证,并开展全面的电学性能测试,主要测定压电常数(d₃₃)和居里温度(TC)。实验结果表明,MPB位置明显受PT含量的影响:随着PT比例的增加,陶瓷中三方相逐步减少,而四方相逐渐占据主导地位,导致晶相平衡发生明显转变。具体而言,不同体系中最优MPB组分范围分别为:(1-x)(0.3PIN-0.6PZN-0.1PZ)-xPT中x=0.245~0.265;(1-x)(0.3PIN-0.5PZN-0.2PZ)-xPT中x=0.290~0.330;以及(1-x)(0.3PIN-0.4PZN-0.3PZ)-xPT中x=0.305~0.345。其中,0.735(0.3PIN-0.6PZN-0.1PZ)-0.265PT样品表现最佳,其d₃₃达到425 pC/N,TC高达253 ℃。这些结果表明,通过精确调控PT含量,可以有效控制MPB处的晶相平衡,从而显著提升压电性能。综上所述,本研究成功确定了PIN-PZN-PZ-PT陶瓷的最优MPB组分,充分展示了其在高性能压电应用中的巨大潜力,并为后续工艺改进和材料长期稳定性研究提供了坚实基础。

关键词: 准同型相界, 压电常数, 居里温度, 相结构, 钙钛矿

Abstract: High-performance piezoelectric ceramics are indispensable in modern electromechanical systems, and multi-component materials like quaternary Pb(In₁/₂Nb₁/₂)O₃-Pb(Zn₁/₃Nb₂/₃)O₃-PbZrO₃-PbTiO₃ (PIN-PZN-PZ-PT) have attracted significant attention due to their unique properties at the morphotropic phase boundary (MPB). The aim of this study was to design and optimize the MPB compositions by precisely adjusting the PbTiO₃ (PT) content in order to achieve enhanced piezoelectric and thermal performance. To accomplish this, the ceramics were synthesized using a conventional solid-state reaction method, and the MPB compositions were initially predicted by employing a linear combination rule that accounts for the contributions of each component; the predicted phases were then confirmed by X-ray diffraction (XRD) analysis, followed by comprehensive electrical tests to measure the piezoelectric constant (d₃₃) and Curie temperature (TC). Experimental results reveal that the MPB position is strongly influenced by the PT content: as the PT fraction increases, the rhombohedral phase gradually decreases while the tetragonal phase becomes predominant, thus shifting the phase equilibrium. Specifically, the optimal composition ranges were determined to be x = 0.245~0.265 for (1-x)(0.3PIN-0.6PZN-0.1PZ)-xPT, x = 0.290~0.330 for (1-x)(0.3PIN-0.5PZN-0.2PZ)-xPT, and x = 0.305~0.345 for (1-x)(0.3PIN-0.4PZN-0.3PZ)-xPT. Notably, the 0.735(0.3PIN-0.6PZN-0.1PZ)-0.265PT sample exhibited superior performance with a d₃₃ of 425 pC/N and a Tc of 253 ℃. These findings demonstrate that precise modulation of the PT content is crucial for controlling the phase balance at the MPB and thereby optimizing the piezoelectric properties. In conclusion, this study successfully identifies the optimal MPB compositions for PIN-PZN-PZ-PT ceramics, highlighting their promising potential for advanced piezoelectric applications and laying a solid foundation for future process improvements and long-term stability research.

Key words: morphotropic phase boundary, piezoelectric constant, Curie temperature, phase structure, perovskite

中图分类号: