无机材料学报 ›› 2023, Vol. 38 ›› Issue (7): 763-770.DOI: 10.15541/jim20220635 CSTR: 32189.14.10.15541/jim20220635

所属专题: 【生物材料】骨骼与齿类组织修复(202409) 【制备方法】3D打印(202409)

• 研究论文 • 上一篇    下一篇

3D打印制备镁黄长石生物陶瓷骨组织工程支架及其性能

施哲1,2(), 刘伟业2,3, 翟东2, 谢建军1(), 朱钰方2()   

  1. 1.上海大学 材料科学与工程学院, 上海 200444
    2.中国科学院 上海硅酸盐研究所, 上海 200050
    3.上海理工大学 材料与化学学院, 上海 200093
  • 收稿日期:2022-10-27 修回日期:2022-11-23 出版日期:2023-12-30 网络出版日期:2022-12-28
  • 通讯作者: 谢建军, 副教授. E-mail: xiejianjun@shu.edu.cn;
    朱钰方, 研究员. E-mail: zjf2412@163.com
  • 作者简介:施 哲(1998-), 男, 硕士研究生. E-mail: zheshi1998@163.com
  • 基金资助:
    国家自然科学基金面上项目(51872185)

Akermanite Scaffolds for Bone Tissue Engineering: 3D Printing Using Polymer Precursor and Scaffold Properties

SHI Zhe1,2(), LIU Weiye2,3, ZHAI Dong2, XIE Jianjun1(), ZHU Yufang2()   

  1. 1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
    2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
    3. School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2022-10-27 Revised:2022-11-23 Published:2023-12-30 Online:2022-12-28
  • Contact: XIE Jianjun, associate professor. E-mail: xiejianjun@shu.edu.cn;
    ZHU Yufang, professor. E-mail: zjf2412@163.com
  • About author:SHI Zhe (1998-), male, Master candidate. E-mail: zheshi1998@163.com
  • Supported by:
    National Natural Science Foundation of China(51872185)

摘要:

具备良好成骨性能和降解速率的生物陶瓷骨组织工程支架在骨修复领域极具应用潜力。镁黄长石(Ca2MgSi2O7)因其具有良好的力学性能、生物降解能力以及促成骨性能而备受关注。本研究以硅树脂为聚合物前驱体、碳酸钙与氧化镁为活性填料制备打印浆料, 采用挤出式3D打印技术在室温条件下制备支架素坯, 并在惰性气氛下高温烧结制备了镁黄长石生物陶瓷支架, 并对比研究了镁黄长石支架与斜硅钙石(Ca2SiO4)、镁橄榄石(Mg2SiO4)支架在结构、抗压强度、体外降解能力以及体外生物学性能等方面的差异。结果表明: 镁黄长石支架与斜硅钙石、镁橄榄石支架具有相似的三维多孔结构, 抗压强度、降解速率介于镁橄榄石和斜硅钙石之间, 但促进骨髓间充质干细胞的成骨基因表达能力显著强于镁橄榄石和斜硅钙石支架。本研究证实采用3D打印制备的镁黄长石支架有望作为骨组织工程较理想的支架。

关键词: 聚合物前驱体, 3D打印, 生物陶瓷

Abstract:

Bioceramic scaffolds with excellent osteogenesis ability and degradation rate exhibit great potential in bone tissue engineering. Akermanite (Ca2MgSi2O7) has attracted much attention due to its good mechanical property, biodegradability and enhanced bone repair ability. Here, akermanite (Ca2MgSi2O7) scaffolds were fabricated by an extrusion-type 3D printing at room temperature and sintering under an inert atmosphere using printing slurry composed of a silicon resin as polymer precursor, and CaCO3 and MgO as active fillers. Furthermore, the differences in structure, compressive strength, in vitro degradation, and biological properties among akermanite, larnite (Ca2SiO4) and forsterite (Mg2SiO4) scaffolds were investigated. The results showed that the akermanite scaffold is similar to those of larnite and forsterite in 3D porous structure, and its compressive strength and degradation rate were between those of the larnite and forsterite scaffolds, but it showed a greater ability to stimulate osteogenic gene expression of rabbit bone marrow mesenchymal stem cells (rBMSCs) than both larnite and forsterite scaffolds. Hence, such 3D printed akermanite scaffold possesses great potential for bone tissue engineering.

Key words: polymer precursor, 3D printing, bioceramics

中图分类号: