无机材料学报 ›› 2021, Vol. 36 ›› Issue (2): 115-127.DOI: 10.15541/jim20200412 CSTR: 32189.14.10.15541/jim20200412
所属专题: 电致变色材料与器件; 功能材料论文精选(2021); 【虚拟专辑】电致变色与热致变色材料; 电致变色专栏2021
• 专栏: 电致变色材料与器件(特邀编辑:刁训刚, 王金敏) • 上一篇 下一篇
范宏伟1(), 李克睿1,2(), 侯成义1, 张青红3, 李耀刚3, 王宏志1()
收稿日期:
2020-07-23
修回日期:
2020-10-06
出版日期:
2021-02-20
网络出版日期:
2020-11-05
通讯作者:
王宏志, 教授. E-mail: wanghz@dhu.edu.cn;作者简介:
范宏伟(1992-), 女, 博士研究生. E-mail: fhw305@126.com
基金资助:
FAN Hongwei1(), LI Kerui1,2(), HOU Chengyi1, ZHANG Qinghong3, LI Yaogang3, WANG Hongzhi1()
Received:
2020-07-23
Revised:
2020-10-06
Published:
2021-02-20
Online:
2020-11-05
About author:
FAN Hongwei (1992–),female,PhD candidate.E-mail:fhw305@126.com
Supported by:
摘要:
电致变色是在外加电场驱动下通过材料氧化还原反应可逆地改变颜色或光学性质的现象。自发现电致变色现象以来, 由于其具有色彩丰富、节能环保和智能可控等优点, 电致变色技术已应用于智能窗、智能显示、防炫目后视镜等领域。随着近些年光电技术的快速发展, 涌现了一系列具有高度集成特性的产品, 电致变色技术也朝着功能化智能化的方向发展: 结合绿色能源技术, 使自供能电致变色系统进一步降低了建筑能耗; 利用电致变色可视化的优点, 电致变色与其他功能器件的集成使信息读取更加快速便捷; 由于电致变色器件与多种功能器件具有相似的结构、电化学原理和活性成分, 电致变色器件也逐渐从单一的色彩变化, 向变色红外调控、变色储能及变色致动等多功能的方向发展。电致变色多功能集成也极大地推动了电致变色技术的进一步发展。本文详细综述了电致变色原理的多器件/单器件多功能集成系统的前沿进展, 例如自供能电致变色、电致变色传感、电致变色红外调控以及电致变色储能等方向, 并介绍了不同类型多功能电致变色器件集成模式、结构设计和性能优化, 同时也针对电致变色多功能应用所面临的挑战与未来可能的发展方向进行了总结与展望。
中图分类号:
范宏伟, 李克睿, 侯成义, 张青红, 李耀刚, 王宏志. 多功能电致变色器件:从多器件到单器件集成[J]. 无机材料学报, 2021, 36(2): 115-127.
FAN Hongwei, LI Kerui, HOU Chengyi, ZHANG Qinghong, LI Yaogang, WANG Hongzhi. Multi-functional Electrochromic Devices: Integration Strategies Based on Multiple and Single Devices[J]. Journal of Inorganic Materials, 2021, 36(2): 115-127.
图1 电致变色发展史: 从高性能到智能化转变
Fig. 1 Development history of electrochromism: from high performance to intelligence (a) EC electrodes and devices for smart windows: (i) Structure and performance of early ECD[11], (ii) Self-weaving WO3 nanoflake EC films[12], (iii) Nest-like WO3 EC films[13]; (b) Multi-device integration based on electrochromism: (i) Integration of ECD and photovoltaic cell[35], (ii) Integration of ECD and tactile sensor[25], (iii) Integration of ECD and strain sensor[26]; (c) Single device integration based on electrochromism: (i) Electrochromic infrared control[27], (ii) Electrochromic supercapacitor[36], (iii) Electrochromic actuator[34]
图2 钙钛矿PECD结构示意图和变色照片(a)[42], 近紫外太阳能电池与ECD叠层结构示意图(b)[45],光照下PECD变色原理示意图和变色照片(c)[46], 以及准固态聚合物PECD结构示意图(d)[43]
Fig. 2 Structural schematic illustration and digital photographs of the perovskite PECD (a)[42], schematic illustration of the stacked structure of the near-ultraviolet solar cells and ECD (b)[45], mechanism and digital photographs of the PECD under irradiation (c)[46], and structural schematic illustration of the quasi-solid PECD(d)[43]
图3 TENG为ECD供能示意图和ECD变色照片(a)[21], 自供能ECD示意图和变色照片(b)[59], 可穿戴压电驱动自供能图案化电致变色超级电容器(c)[24], 以及Al3+超级电容器与ECD集成示意图和ECD变色照片(d)[60]
Fig. 3 Schematic illustration of the TENG powered ECD and color-changing photographs of the ECD (a)[21], schematic illustration and color-changing photographs of the self-powered ECD (b)[59], wearable piezoelectric-driven self-powered patterned EC supercapacitor (c)[24], and schematic illustration of the ECD integrated with Al3+-based supercapacitor and color-changing photographs of the ECD (d)[60]
图4 电致变色压力传感器示意图和触觉感知变色照片(a)[25], 电致变色应变传感器示意图和演示照片(b)[61],自供能电致变色生物传感器(c)[64], 以及双极电极结构的电致变色化学传感器(d)[63]
Fig. 4 Structural schematic illustration of the EC tactile sensor and sequential photographs of a teddy bear show the expression of tactile sensing into visible color changes (a)[25], schematic illustration of the strain sensor and ECD, and sequential photographs of a hand with color changes together with finger motions (b)[61],self-powered EC biosensor (c)[64], and bipolar electrode-enabled EC chemical sensor (d)[63]
图5 基于Li4Ti5O12(a)[77]、基于PANI(b)[71]和基于PEDOT: Tosylate(c)[78]的红外电致变色器件及相关性能
Fig. 5 Li4Ti5O12-based[77] (a), PANI-based (b)[71], and PEDOT: Tosylate-based (c)[78] infrared ECD and corresponding performances
图6 PANI基电致变色超级电容器(a)[101], PEDOT/Ti3C2Tx基电致变色超级电容器(b)[102], PEDOT:PSS/WO3基透明可拉伸电致变色超级电容器(c)[99], 以及PANI基纤维状电致变色超级电容器(d)[100]
Fig. 6 PANI-based EC supercapacitor (a)[101], PEDOT/Ti3C2Tx-based EC supercapacitor (b)[102], transparent stretchable PEDOT:PSS/WO3-based EC supercapacitor (c)[99], and PANI-based EC fiber-shaped supercapacitors (d)[100]
图7 Al/PB电致变色电池(a)[73], H2O2辅助的Al/W18O49NWs电致变色电池(b)[107], 采用Zn2+/Al3+杂化电解质的电致变色电池(c)[110], 以及柔性Zn/PPy电致变色电池(d)[111]
Fig. 7 Al/PB EC battery (a)[73], H2O2-assisted Al/W18O49NWs EC battery (b)[107], aqueous hybrid Zn2+/Al3+EC battery (c)[110], flexible Zn/PPy EC battery (d)[111]
[1] |
THAKUR V K, DING G, MA J, et al. Hybrid materials and polymer electrolytes for electrochromic device applications. Advanced Materials, 2012,24(30):4071-4096.
URL PMID |
[2] | PLATT J R Electrochromism, a possible change of color producible in dyes by an electric field. Journal of Chemical Physics, 1961,34(3):862-863. |
[3] | DEB S K. A novel electrophotographic system. Applied Optics, 1969,8(101):192-195. |
[4] | SVENSSON J S E M, GRANQVIST C G. Electrochromic Coatings for "Smart Windows". Optical Materials Technology for Energy Efficiency and Solar Energy Conversion III. International Society for Optics and Photonics, 1984,502:30-37. |
[5] | RAUH R. Counter electrodes in transmissive electrochromic light modulators. Solid State Ionics, 1988,28-30:1707-1714. |
[6] | PASSERINI S, TIPTON A L, SMYRL W H. Spin coated V2O5 XRG as optically passive electrode in laminated electrochromic devices. Solar Energy Materials and Solar Cells, 1995,39(2/3/4):167-177. |
[7] | RAUH R D. Electrochromic windows: an overview. Electrochimica Acta, 1999,44(18):3165-3176. |
[8] | CHO S I, KWON W J, CHOI S J, et al. Nanotube-based ultrafast electrochromic display. Advanced Materials, 2005,17(2):171-175. |
[9] | AMB C M, DYER A L, REYNOLDS J R. Navigating the color palette of solution-processable electrochromic polymers. Chemistry of Materials, 2011,23(3):397-415. |
[10] | YAN C, KANG W, WANG J, et al. Stretchable and wearable electrochromic devices. ACS Nano, 2014,8(1):316-322. |
[11] | BAUDRY P. Electrochromic window with lithium conductive polymer electrolyte. Journal of the Electrochemical Society, 1991,138(2):460-465. |
[12] | MA D, WANG H, ZHANG Q, et al. Self-weaving WO3 nanoflake films with greatly enhanced electrochromic performance. Journal of Materials Chemistry, 2012,22(32):16633-16639. |
[13] | LI H, SHI G, WANG H, et al. Self-seeded growth of nest-like hydrated tungsten trioxide film directly on FTO substrate for highly enhanced electrochromic performance. Journal of Materials Chemistry A, 2014,2(29):11305-11310. |
[14] |
BEAUJUGE P M, REYNOLDS J R. Color control in pi-conjugated organic polymers for use in electrochromic devices. Chemical Reviews, 2010,110(1):268-320.
URL PMID |
[15] | WEI Y, CHEN M, LIU W, et al. Recent process and application of electrochromism. Journal of Aeronautical Materials, 2016,36(3):108-123. |
[16] | MADASAMY K, VELAYUTHAM D, SURYANARAYANAN V, et al. Viologen-based electrochromic materials and devices. Journal of Materials Chemistry C, 2019,7(16):4622-4637. |
[17] | WANG Z, WANG X, CONG S, et al. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Materials Science & Engineering R, 2020,140:100524. |
[18] | BENSON D K, BRANZ H M. Design goals and challenges for a photovoltaic-powered electrochromic window covering. Solar Energy Materials and Solar Cells, 1995,39(2/3/4):203-211. |
[19] |
XIE Z, JIN X, CHEN G, et al. Integrated smart electrochromic windows for energy saving and storage applications. Chemical Communications, 2014,50(5):608-610.
DOI URL PMID |
[20] | WU J J, HSIEH M D, LIAO W P, et al. Fast-switching photovoltachromic cells with tunable transmittance. ACS Nano, 2009,3(8):2297-2303. |
[21] | YANG X, ZHU G, WANG S, et al. A self-powered electrochromic device driven by a nanogenerator. Energy & Environmental Science, 2012,5(11):9462-9466. |
[22] | SONG Y, CHENG X, CHEN H, et al. Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. Journal of Materials Chemistry A, 2016,4(37):14298-14306. |
[23] | KIM S L, HSU J H, YU C. Intercalated graphene oxide for flexible and practically large thermoelectric voltage generation and simultaneous energy storage. Nano Energy, 2018,48:582-589. |
[24] | HE Z, GAO B, LI T, et al. Piezoelectric-driven self-powered patterned electrochromic supercapacitor for human motion energy harvesting. ACS Sustainable Chemistry & Engineering, 2018,7(1):1745-1752. |
[25] | CHOU H H, NGUYEN A, CHORTOS A, et al. A chameleon- inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Communications, 2015,6:8011. |
[26] | ZHANG X, JING Y, ZHAI Q, et al. Point-of-care diagnoses: flexible patterning technique for self-powered wearable sensors. Analytical Chemistry, 2018,90(20):11780-11784. |
[27] | XU G, ZHANG L, WANG B, et al. A visible-to-infrared broadband flexible electrochromic device based polyaniline for simultaneously variable optical and thermal management. Solar Energy Materials and Solar Cells, 2020,208:110356. |
[28] | DEMIRYONT H, MOOREHEAD D. Electrochromic emissivity modulator for spacecraft thermal management. Solar Energy Materials and Solar Cells, 2009,93(12):2075-2078. |
[29] | BESSIERE A, MARCEL C, MORCRETTE M, et al. Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control. Journal of Applied Physics, 2002,91(3):1589-1594. |
[30] | LEE S H, LIU P, SEONG M J, et al. Electrochemical supercapacitors for optical modulation. Electrochemical and Solid-State Letters, 2002,6(2):A40-A42. |
[31] | CHEN L C, HUANG Y H, TSENG K S, et al. Novel electrochromic batteries. Part one: a PB-WO3 cell with a theoretical voltage of 1.35 V. Journal of New Materials for Electrochemical Systems, 2002,5(3):203-212. |
[32] | YANG P, SUN P, MAI W. Electrochromic energy storage devices. Materials Today, 2016,19(7):394-402. |
[33] | OTERO T F, BOYANO I, CORT S M T, et al. Nucleation, non-stoiquiometry and sensing muscles from conducting polymers. Electrochimica Acta, 2004,49(22):3719-3726. |
[34] |
LI K, SHAO Y, YAN H, et al. Lattice-contraction triggered synchronous electrochromic actuator. Nature Communications, 2018,9:4798.
URL PMID |
[35] | DYER A L, BULLOCH R H, ZHOU Y, et al. A vertically integrated solar-powered electrochromic window for energy efficient buildings. Advanced Materials, 2014,26(28):4895-4900. |
[36] | ALG F, CIHANER A. An ambipolar neutral state green polymeric electrochromic. Organic Electronics, 2009,10(4):704-710. |
[37] |
CAPOFERRI D, ALVAREZ-DIDUK R, DEL CARLO M, et al. Electrochromic molecular imprinting sensor for visual and smartphone- based detections. Analytical Chemistry, 2018,90(9):5850-5856.
DOI URL PMID |
[38] | POONGODI S, KUMAR P S, MANGALARAJ D, et al. Electrodeposition of WO3 nanostructured thin films for electrochromic and H2S gas sensor applications. Journal of Alloys and Compounds, 2017,719:71-81. |
[39] | CONG S, WANG Z, GONG W, et al. Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability. Nature Communications, 2019,10:678. |
[40] | LI H, ELEZZABI A Y. Simultaneously enabling dynamic transparency control and electrical energy storage via electrochromism. Nanoscale Horizons, 2020,5(4):691-695. |
[41] | BOGATI S, GEORG A, GRAF W. Photoelectrochromic devices based on sputtered WO3 and TiO2 films. Solar Energy Materials and Solar Cells, 2017,163:170-177. |
[42] | CANNAVALE A, EPERON G E, COSSARI P, et al. Perovskite photovoltachromic cells for building integration. Energy & Environmental Science, 2015,8(5):1578-1584. |
[43] | BELLA F, LEFTHERIOTIS G, GRIFFINI G, et al. A new design paradigm for smart windows: photocurable polymers for quasi-solid photoelectrochromic devices with excellent long-term stability under real outdoor operating conditions. Advanced Functional Materials, 2016,26(7):1127-1137. |
[44] | QIN S, ZHANG Q, YANG X, et al. Hybrid piezo/triboelectric- driven self-charging electrochromic supercapacitor power package. Advanced Energy Materials, 2018,8(23):1800069. |
[45] | DAVY N C, SEZEN-EDMONDS M, GAO J, et al. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nature Energy, 2017,2(8):17104. |
[46] | AMASAWA E, SASAGAWA N, KIMURA M, et al. Design of a new energy-harvesting electrochromic window based on an organic polymeric dye, a cobalt couple, and PProDOT-Me2. Advanced Energy Materials, 2014,4(14):1400379. |
[47] | CHO J, YUN T Y, NOH H Y, et al. Semitransparent energy-storing functional photovoltaics monolithically integrated with electrochromic supercapacitors. Advanced Functional Materials, 2020,30(12):1909601. |
[48] | MALARA F, CANNAVALE A, CARALLO S, et al. Smart windows for building integration: a new architecture for photovoltachromic devices. ACS Applied Materials & Interfaces, 2014,6(12):9290-9297. |
[49] | BECHINGER C, FERRERE S, ZABAN A, et al. Photoelectrochromic windows and displays. Nature, 1996,383(6601):608-610. |
[50] | JIAO Z, SONG J L, SUN X W, et al. A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films. Solar Energy Materials and Solar Cells, 2012,98:154-160. |
[51] | WANG Y, ZHANG L, CUI K, et al. Solar driven electrochromic photoelectrochemical fuel cells for simultaneous energy conversion, storage and self-powered sensing. Nanoscale, 2018,10(7):3421-3428. |
[52] | KUMAR P N, NARAYANAN R, LAHA S, et al. Photoelectrochromic cell with a CdS quantum dots/graphitic-nanoparticles sensitized anode and a molybdenum oxide cathode. Solar Energy Materials and Solar Cells, 2016,153:138-147. |
[53] | YU X, LI Y, ZHU N, et al. A polyaniline nanofibre electrode and its application in a self-powered photoelectrochromic cell. Nanotechnology, 2007,18(1):015201. |
[54] |
COSTA C, MESQUITA I, ANDRADE L, et al. Photoelectrochromic devices: influence of device architecture and electrolyte composition. Electrochimica Acta, 2016,219:99-106.
DOI URL |
[55] | LUO G, SHEN K, WU X, et al. High contrast photoelectrochromic device with CdS quantum dot sensitized photoanode. New Journal of Chemistry, 2017,41(2):579-587. |
[56] | KOLAY A, DAS A, GHOSAL P, et al. New photoelectrochromic device with chromatic silica/tungsten oxide/copper hybrid film and photovoltaic polymer/quantum dot sensitized anode. ACS Applied Energy Materials, 2018,1(8):4084-4095. |
[57] | YANG M C, CHO H W, WU J J. Fabrication of stable photovoltachromic cells using a solvent-free hybrid polymer electrolyte. Nanoscale, 2014,6(16):9541-9544. |
[58] | YEH M H, LIN L, YANG P K, et al. Motion-driven electrochromic reactions for self-powered smart window system. ACS Nano, 2015,9(5):4757-4765. |
[59] | SUN J G, YANG T N, KUO I S, et al. A leaf-molded transparent triboelectric nanogenerator for smart multifunctional applications. Nano Energy, 2017,32:180-186. |
[60] | LI K, SHAO Y, LIU S, et al. Aluminum-ion-intercalation supercapacitors with ultrahigh areal capacitance and highly enhanced cycling stability: power supply for flexible electrochromic devices. Small, 2017,13(19):1700380. |
[61] |
PARK H, KIM D S, HONG S Y, et al. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale, 2017,9(22):7631-7640.
URL PMID |
[62] |
ZHAI Q, ZHANG X, XIA Y, et al. Electrochromic sensing platform based on steric hindrance effects for CEA detection. Analyst, 2016,141(13):3985-3988.
URL PMID |
[63] | XU W, FU K, MA C, et al. Closed bipolar electrode-enabled dual-cell electrochromic detectors for chemical sensing. Analyst, 2016,141(21):6018-6024. |
[64] | YU Z, CAI G, REN R, et al. New enzyme immunoassay for alpha-fetoprotein in a separate setup coupling an aluminium/ Prussian blue-based self-powered electrochromic display with a digital multimeter readout. Analyst, 2018,143(13):2992-2996. |
[65] | YANG T, ZHONG Y, TAO D, et al. Integration of graphene sensor with electrochromic device on modulus-gradient polymer for instantaneous strain visualization. 2D Materials, 2017,4(3):035020. |
[66] | ZHANG F, CAI T, MA L, et al. A paper-based electrochromic array for visualized electrochemical sensing. Sensors, 2017,17(2):276. |
[67] |
XU W, FU K, BOHN P W. Electrochromic sensor for multiplex detection of metabolites enabled by closed bipolar electrode coupling. ACS Sensors, 2017,2(7):1020-1026.
URL PMID |
[68] |
LIU H, CROOKS R M. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Analytical Chemistry, 2012,84(5):2528-2532.
DOI URL PMID |
[69] | YU X, LIANG J, YANG T, et al. A resettable and reprogrammable keypad lock based on electrochromic Prussian blue films and biocatalysis of immobilized glucose oxidase in a bipolar electrode system. Biosensors and Bioelectronics, 2018,99:163-169. |
[70] |
ZLOCZEWSKA A, CELEBANSKA A, SZOT K, et al. Self-powered biosensor for ascorbic acid with a Prussian blue electrochromic display. Biosensors and Bioelectronics, 2014,54:455-461.
DOI URL PMID |
[71] |
ZHANG L, WANG B, LI X, et al. Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers. Journal of Materials Chemistry C, 2019,7(32):9878-9891.
DOI URL |
[72] | ZHANG P, ZHU F, WANG F, et al. Stimulus-responsive micro-supercapacitors with ultrahigh energy density and reversible electrochromic window. Advanced Materials, 2017,29(7):1604491. |
[73] |
WANG J M, ZHANG L, YU L, et al. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nature Communications, 2014,5:4921.
URL PMID |
[74] | WANG Z, ZHU M, GOU S, et al. Pairing of luminescent switch with electrochromism for quasi-solid-state dual-function smart windows. ACS Applied Materials & Interfaces, 2018,10(37):31697-31703. |
[75] | LI R, LI K, WANG G, et al. Ion-transport design for high- performance Na+-based electrochromics. ACS Nano, 2018,12(4):3759-3768. |
[76] | LANG F, WANG H, ZHANG S, et al. Review on variable emissivity materials and devices based on smart chromism. International Journal of Thermophysics, 2017,39(1):6. |
[77] | MANDAL J, DU S, DONTIGNY M, et al. Li4Ti5O12: a visible- to-infrared broadband electrochromic material for optical and thermal management. Advanced Functional Materials, 2018,28(36):1802180. |
[78] | BROOKE R, MITRAKA E, SARDAR S, et al. Infrared electrochromic conducting polymer devices. Journal of Materials Chemistry C, 2017,5(23):5824-5830. |
[79] | ZHANG X, TIAN Y, LI W, et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films. Solar Energy Materials and Solar Cells, 2019,200:109916. |
[80] | HALE J S, WOOLLAM J A. Prospects for IR emissivity control using electrochromic structures. Thin Solid Films, 1999,339(1/2):174-180. |
[81] | CHANDRASEKHAR P, ZAY B J, BIRUR G C, et al. Large, switchable electrochromism in the visible through far-infrared in conducting polymer devices. Advanced Functional Materials, 2002,12(2):95-103. |
[82] | ZHANG L, XIA G, LI X, et al. Fabrication of the infrared variable emissivity electrochromic film based on polyaniline conducting polymer. Synthetic Metals, 2019,248:88-93. |
[83] | SCHWENDEMAN I, HWANG J, WELSH D M, et al. Combined visible and infrared electrochromism using dual polymer devices. Advanced Materials, 2001,13(9):634-637. |
[84] | KIM B, KOH J K, PARK J, et al. Patternable PEDOT nanofilms with grid electrodes for transparent electrochromic devices targeting thermal camouflage. Nano Convergence, 2015,2(1):19. |
[85] | SUN J, PU X, JIANG C, et al. Self-powered electrochromic devices with tunable infrared intensity. Science Bulletin, 2018,63(12):795-801. |
[86] | TIAN Y, ZHANG X, DOU S, et al. A comprehensive study of electrochromic device with variable infrared emissivity based on polyaniline conducting polymer. Solar Energy Materials and Solar Cells, 2017,170:120-126. |
[87] | LI X, ZHANG L, WANG B, et al. Highly-conductive porous poly (ether ether ketone) electrolyte membranes for flexible electrochromic devices with variable infrared emittance. Electrochimica Acta, 2020,332:135357. |
[88] | ZHANG L, LI D, LI X, et al. Further explore on the behaviors of IR electrochromism of a double layer constructed by proton acid-doped polyaniline film and ITO layer. Dyes and Pigments, 2019,170:107570. |
[89] | LI H, XIE K, PAN Y, et al. Variable emissivity infrared electrochromic device based on polyaniline conducting polymer. Synthetic Metals, 2009,159(13):1386-1388. |
[90] | YANG B, MA D, ZHENG E, et al. A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Solar Energy Materials and Solar Cells, 2019,192:1-7. |
[91] | TONG Z, TIAN Y, ZHANG H, et al. Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices. Science China Chemistry, 2016,60(1):13-37. |
[92] | GUO Q, LI J, ZHANG B, et al. High-performance asymmetric electrochromic-supercapacitor device based on poly(indole-6- carboxylicacid)/TiO2 nanocomposites. ACS Applied Materials & Interfaces, 2019,11(6):6491-6501. |
[93] | CAI G, DARMAWAN P, CUI M, et al. Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Advanced Energy Materials, 2016,6(4):1501882. |
[94] | WANG K, WU H, MENG Y, et al. Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy & Environmental Science, 2012,5(8):8384-8389. |
[95] | TIAN Y, CONG S, SU W, et al. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Letters, 2014,14(4):2150-2156. |
[96] | GROTE F, YU Z Y, WANG J L, et al. Self-stacked reduced graphene oxide nanosheets coated with cobalt-nickel hydroxide by one-step electrochemical deposition toward flexible electrochromic supercapacitors. Small, 2015,11(36):4666-4672. |
[97] | GUO Y, LI W, YU H, et al. Flexible asymmetric supercapacitors via spray coating of a new electrochromic donor-acceptor polymer. Advanced Energy Materials, 2017,7(2):1601623. |
[98] | CAI G, DARMAWAN P, CHENG X, et al. Inkjet printed large area multifunctional smart windows. Advanced Energy Materials, 2017,7(14):1602598. |
[99] | YUN T G, PARK M, KIM D H, et al. All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano, 2019,13(3):3141-3150. |
[100] | CHEN X, LIN H, DENG J, et al. Electrochromic fiber-shaped supercapacitors. Advanced Materials, 2014,26(48):8126-8132. |
[101] | ZHOU K, WANG H, JIU J, et al. Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chemical Engineering Journal, 2018,345:290-299. |
[102] | LI J, LEVITT A, KURRA N, et al. MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Materials, 2019,20:455-461. |
[103] | YUE Y F, LI H Z, LI K R, et al. Preparation and properties of NiO/PB hybrid electrochromic film. Journal of Inorganic Materials, 2017,32(9):949-954. |
[104] | CHEN Y, MA P H, ZHANG C, et al. Preparation and electrochemical property of a new multifunctional inorganic/organic composite film. Journal of Inorganic Materials, 2020,35(2):217-223. |
[105] | WEI H, YAN X, WU S, et al. Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: electrochromic behavior and electrochemical energy storage. Journal of Physical Chemistry C, 2012,116(47):25052-25064. |
[106] | ZHOU Y, ZHAO Y, FANG J, et al. Electrochromic/supercapacitive dual functional fibres. RSC Advances, 2016,6(111):110164-110170. |
[107] | ZHAO J, TIAN Y, WANG Z, et al. Trace H2O2-assisted high-capacity tungsten oxide electrochromic batteries with ultrafast charging in seconds. Angewandte Chemie International Edition, 2016,55(25):7161-7165. |
[108] | ZHANG W, LI H, AL-HUSSEIN M, et al. Electrochromic battery displays with energy retrieval functions using solution-processable colloidal vanadium oxide nanoparticles. Advanced Optical Materials, 2019,8(2):1901224. |
[109] | LI H, MCRAE L, FIRBY C J, et al. Rechargeable aqueous electrochromic batteries utilizing Ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes. Advanced Materials , 2019,31(15):1807065. |
[110] | LI H, FIRBY C J, ELEZZABI A Y. Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries . Joule, 2019,3(9):2268-2278. |
[111] | WANG J, LIU J, HU M, et al. A flexible, electrochromic, rechargeable Zn//PPy battery with a short circuit chromatic warning function. Journal of Materials Chemistry A, 2018,6(24):11113-11118. |
[112] | DETSI E, ONCK P R, DE HOSSON J T M. Electrochromic artificial muscles based on nanoporous metal-polymer composites. Applied Physics Letters, 2013,103(19):193101. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 甄明硕, 刘晓然, 范向前, 张文平, 严东东, 刘磊, 李晨. 电致变色型智能可视化湿度系统[J]. 无机材料学报, 2024, 39(4): 432-440. |
[15] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||