无机材料学报 ›› 2021, Vol. 36 ›› Issue (7): 718-724.DOI: 10.15541/jim20200522 CSTR: 32189.14.10.15541/jim20200522
付宇坤1(), 曾敏1, 饶先发1, 钟盛文1, 张慧娟2, 姚文俐1(
)
收稿日期:
2020-09-07
修回日期:
2021-01-04
出版日期:
2021-07-20
网络出版日期:
2021-01-25
通讯作者:
姚文俐, 副教授. E-mail:wenliyao@126.com
作者简介:
付宇坤(1996-), 男, 硕士研究生. E-mail:475322904@qq.com
基金资助:
FU Yukun1(), ZENG Min1, RAO Xianfa1, ZHONG Shengwen1, ZHANG Huijuan2, YAO Wenli1(
)
Received:
2020-09-07
Revised:
2021-01-04
Published:
2021-07-20
Online:
2021-01-25
Contact:
YAO Wenli, associate professor. E-mail:wenliyao@126.com
About author:
FU Yukun(1996-), male, Master candidate. E-mail:475322904@qq.com
Supported by:
摘要:
高镍正极材料由于较高的比容量和性价比而受到关注, 但在循环过程中稳定性较差且安全性能不佳, 限制了其更广泛的应用。本研究结合微波辅助共沉淀与高温固相法制备高镍正极LiNi0.8Mn0.2O2二元材料, 再掺入不同比例的Co、Al对材料进行改性研究。结果表明, 改性后的材料性能明显改善, 特别是LiNi0.8Mn0.1Co0.08Al0.02O2在2.75~4.35 V、1C下循环100次后容量保持率达到91.39%, 在5C下放电比容量仍有160.03 mAh∙g-1, 并且掺杂后的材料具有较高的热稳定性, 安全性得到提升。其优异的循环保持率归因于Co、Al较好地抑制了循环过程中H2→H3相变的不可逆性对材料结构稳定性的破坏, 以及较弱的电极反应极化, 使电荷转移电阻降低。
中图分类号:
付宇坤, 曾敏, 饶先发, 钟盛文, 张慧娟, 姚文俐. 锂离子电池高镍LiNi0.8Mn0.2O2正极材料的微波合成及其Co、Al共改性[J]. 无机材料学报, 2021, 36(7): 718-724.
FU Yukun, ZENG Min, RAO Xianfa, ZHONG Shengwen, ZHANG Huijuan, YAO Wenli. Microwave-assisted Synthesis and Co, Al Co-modification of Ni-rich LiNi0.8Mn0.2O2 Materials for Li-ion Battery Electrode[J]. Journal of Inorganic Materials, 2021, 36(7): 718-724.
图1 (a, b) NM-82、(c~l) NMCA-n (n=0, 1, 2, 3, 5)的SEM照片
Fig. 1 SEM images of (a, b) NM-82, (c-l) NMCA-n (n=0, 1, 2, 3, 5) (c, d) n=0; (e, f) n=1; (g, h) n=2; (i, j) n=3; (k, l) n=5
图4 NM-82和NMCA-2的(a, c)TEM照片、(b, d)HR-TEM照片和((b, d)中插图)相应的FFT图片
Fig. 4 (a,c) TEM images, (b,d)HR-TEM images and (insets in (b, d)) the corresponding FFT graphs of NM-82 and NMCA-2 (a, c) Magnified images of the square areas in the corresponding insets
图5 NM-82、NMCA-0和NMCA-2的(a~c)充电/放电曲线和(d~f)相应的dQ/dV曲线
Fig. 5 (a-c) Charge/discharge curves and (d-f) corresponding dQ/dV plots of NM-82, NMCA-0 and NMCA-2
图7 NM-82、NMCA-0和NMCA-2的(a~c)CV曲线、(d~f)EIS图谱及((d)中插图)对应的等效电路图
Fig. 7 (a-c) CV curves, (d-f) EIS plots and (insert in (d)) corresponding equivalent electrical circuit of NM-82, NMCA-0 and NMCA-2
图S3 NM-82和NMCA-2的(a, b)粒径分布、(c)氮气吸附-解吸等温线和(d)孔径分布图
Fig. S3 (a, b) Particle size distributions, (c) nitrogen adsorption-desorption isotherms and (d) pore size distributions of NM-82 and NMCA-2
Sample | a/nm | c/nm | c/a | I(003)/I(104) |
---|---|---|---|---|
NM-82 | 0.2875 | 1.4232 | 4.9507 | 1.3197 |
NMCA-0 | 0.2877 | 1.4229 | 4.9457 | 1.3945 |
NMCA-2 | 0.2872 | 1.4243 | 4.9593 | 1.5888 |
表S1 NM-82、NMCA-0和NMCA-2的XRD精修结果
Table S1 Parameters of Rietveld refinement for NM-82, NMCA-0 and NMCA-2
Sample | a/nm | c/nm | c/a | I(003)/I(104) |
---|---|---|---|---|
NM-82 | 0.2875 | 1.4232 | 4.9507 | 1.3197 |
NMCA-0 | 0.2877 | 1.4229 | 4.9457 | 1.3945 |
NMCA-2 | 0.2872 | 1.4243 | 4.9593 | 1.5888 |
Sample | 0.2C | 0.5C | 1C | 2C | 3C | 4C | 5C | 0.2C |
---|---|---|---|---|---|---|---|---|
NM-82 | 195.57 | 183.52 | 175.03 | 164.59 | 157.33 | 149.26 | 141.49 | 185.66 |
NMCA-0 | 192.45 | 182.66 | 176.69 | 166.91 | 160.88 | 157.05 | 153.17 | 183.80 |
NMCA-1 | 189.79 | 182.60 | 177.43 | 169.72 | 165.24 | 162.25 | 158.83 | 187.36 |
NMCA-2 | 189.70 | 183.05 | 177.84 | 172.80 | 169.08 | 164.76 | 160.03 | 189.25 |
NMCA-3 | 187.28 | 180.32 | 174.85 | 168.60 | 162.63 | 158.61 | 156.14 | 187.50 |
NMCA-5 | 186.04 | 178.28 | 173.83 | 167.08 | 163.41 | 157.97 | 150.84 | 181.33 |
表S2 材料在不同倍率下的放电比容量
Table S2 Specific discharge capacities of materials at different rates/(mAh·g-1)
Sample | 0.2C | 0.5C | 1C | 2C | 3C | 4C | 5C | 0.2C |
---|---|---|---|---|---|---|---|---|
NM-82 | 195.57 | 183.52 | 175.03 | 164.59 | 157.33 | 149.26 | 141.49 | 185.66 |
NMCA-0 | 192.45 | 182.66 | 176.69 | 166.91 | 160.88 | 157.05 | 153.17 | 183.80 |
NMCA-1 | 189.79 | 182.60 | 177.43 | 169.72 | 165.24 | 162.25 | 158.83 | 187.36 |
NMCA-2 | 189.70 | 183.05 | 177.84 | 172.80 | 169.08 | 164.76 | 160.03 | 189.25 |
NMCA-3 | 187.28 | 180.32 | 174.85 | 168.60 | 162.63 | 158.61 | 156.14 | 187.50 |
NMCA-5 | 186.04 | 178.28 | 173.83 | 167.08 | 163.41 | 157.97 | 150.84 | 181.33 |
Sample | Cycle number | Rs/Ω | Rsf /Ω | Rct/Ω |
---|---|---|---|---|
NM-82 | 5 | 3.85 | 20.20 | 46.65 |
50 | 3.09 | 49.32 | 64.95 | |
100 | 7.27 | 94.06 | 138.40 | |
NMCA-0 | 5 | 1.89 | 29.24 | 20.19 |
50 | 2.01 | 58.13 | 72.25 | |
100 | 4.04 | 82.55 | 114.90 | |
NMCA-2 | 5 | 5.11 | 31.85 | 19.80 |
50 | 3.30 | 51.78 | 72.70 | |
100 | 4.08 | 67.32 | 67.88 |
表S3 NM-82、NMCA-0和NMCA-2的EIS拟合数据
Table S3 EIS fitting data of NM-82, NMCA-0 and NMCA-2
Sample | Cycle number | Rs/Ω | Rsf /Ω | Rct/Ω |
---|---|---|---|---|
NM-82 | 5 | 3.85 | 20.20 | 46.65 |
50 | 3.09 | 49.32 | 64.95 | |
100 | 7.27 | 94.06 | 138.40 | |
NMCA-0 | 5 | 1.89 | 29.24 | 20.19 |
50 | 2.01 | 58.13 | 72.25 | |
100 | 4.04 | 82.55 | 114.90 | |
NMCA-2 | 5 | 5.11 | 31.85 | 19.80 |
50 | 3.30 | 51.78 | 72.70 | |
100 | 4.08 | 67.32 | 67.88 |
[1] |
LIU J, ZHANG J G, YANG Z, et al. Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv. Funct. Mater., 2013,23(8):929-946.
DOI URL |
[2] |
KE J, XIE K, HAN Y, et al. Morphology controlling of the high-voltage cathode materials with different co-solvents. J. Inorg. Mater., 2019,34(6):618-624.
DOI URL |
[3] |
LI X, GE W, WANG H, et al. Research progress on the capacity fading mechanisms of high-nickel ternary layered oxide cathode materials. J. Inorg. Mater., 2017,32(2):113-121.
DOI URL |
[4] |
MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun., 2020,11(1):1550.
DOI URL |
[5] | 邱世涛, 钟盛文, 李婷婷, 等. Cu掺杂LiNi0.6Co0.2Mn0.2O2的电化学性能. 有色金属科学与工程, 2018,9(5):25-29. |
[6] |
LI M, JUN L. Cobalt in lithium-ion batteries. Science, 2020,367(6481):979-980.
DOI URL |
[7] |
LI W, ERICKSON E M, MANTHIRAM A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy, 2020,5(1):26-34.
DOI URL |
[8] |
ZHAO E, FANG L, CHEN M, et al. New insight into Li/Ni disorder in layered cathode materials for lithium ion batteries: a joint study of neutron diffraction, electrochemical kinetic analysis and first-principles calculations. J. Mater. Chem. A, 2017,5(4):1679-1686.
DOI URL |
[9] |
WU F, LIU N, CHEN L, et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy, 2019,59:50-57.
DOI URL |
[10] | 孔祥泽, 李东林, 王子匀, 等. 钨掺杂对锂离子电池LiNiO2正极材料性能的影响. 无机化学学报, 2019,35(7):1169-1175. |
[11] |
YAO W, LIU Y, LI D, et al. Synergistically enhanced electrochemical performance of Ni-rich cathode materials for lithium-ion batteries by K and Ti co-modification. J. Phys. Chem. C, 2020,124(4):2346-2356.
DOI URL |
[12] |
DIXIT M, MARKOVSKY B, SCHIPPER F, et al. The origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials. J. Phys. Chem. C, 2017,121:22628.
DOI URL |
[13] | 钟盛文, 张华军, 姚文俐, 等. LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12) 正极材料的制备及其电化学性能. 材料研究学报, 2018,32(7):9-16. |
[14] |
TORNHEIM A, SHARIFI-ASL S, GARCIA J C, et al. Effect of electrolyte composition on rock salt surface degradation in NMC cathodes during high-voltage potentiostatic holds. Nano Energy, 2019,55:216-225.
DOI URL |
[15] |
MATSUMOTO K, KUZUO R, TAKEYA K, et al. Effects of CO2 in air on Li deintercalation from LiNi1-x-yCoxAlyO2. J. Power Sources, 1999, 81-82:558-561.
DOI URL |
[16] |
ZHANG S S, FAN X, WANG C. Enhanced electrochemical performance of Ni-rich layered cathode materials by using LiPF6 as a cathode additive. ChemElectroChem, 2019,6(5):1536-1541.
DOI URL |
[17] |
HATSUKADE T, SCHIELE A, HARTMANN P, et al. Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes. ACS Appl. Mater. Interfaces, 2018,10:38892-38899.
DOI URL |
[18] |
YAO W, DAI Q, LIU Y, et al. Microwave-assisted synthesis of Co3O4 sheets for reversible Li storage: regulation of structure and performance. ChemElectroChem, 2017,4(5):1236-1242.
DOI URL |
[19] |
LIU Y, YAO W, LEI C, et al. Ni-rich oxide LiNi0.85Co0.05Mn0.1O2 for lithium ion battery: effect of microwave radiation on its morphology and electrochemical property. J. Electrochem. Soc., 2019,166(8):A1300-A1309.
DOI URL |
[20] |
YOSHIO M, NOGUCHI H, ITOH J I, et al. Preparation and properties of LiCoyMnxNi1-x-yO2 as a cathode for lithium ion batteries. J. Power Sources, 2000,90(2):176-181.
DOI URL |
[21] |
LI Z, ZHANG J, GAO R, et al. Unveiling the role of Co in improving the high-rate capability and cycling performance of layered Na0.7Mn0.7Ni0.3-xCoxO2 cathode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces, 2016,8(24):15439-15448.
DOI URL |
[22] |
BAI X, BAN L, ZHUANG W. Research progress on coating and doping modification of nickel rich ternary cathode materials. J. Inorg. Mater., 2020,35(9):972-986.
DOI URL |
[23] |
LI Y C, XIANG W, WU Z G, et al. Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochim. Acta, 2018,291:84-94.
DOI URL |
[24] |
PARK K J, CHOI M J, MAGLIA F, et al. High-capacity concentration gradient Li[Ni0.865Co0.120Al0.015]O2 cathode for lithium-ion batteries. Adv. Energy Mater., 2018,8(19):1703612.
DOI URL |
[25] |
ZHAO W G, ZOU L F, JIA H P, et al. Optimized Al doping improves both interphase stability and bulk structural integrity of Ni-rich NMC cathode materials. ACS Appl. Energy Mater., 2020,3(4):3369-3377.
DOI URL |
[26] | 郭乾坤, 黄吉丽, 周苗苗, 等. 单晶LiNi0.83Co0.1Mn0.07O2正极材料的合成及电化学性能. 有色金属科学与工程, 2020,11(4):23-28. |
[27] |
XIE Z, ZHANG Y, YUAN A, et al. Effects of lithium excess and SnO2 surface coating on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material for lithium-ion batteries. J. Alloys Compd., 2019,787:429-439.
DOI URL |
[28] |
LI J, LIU Y, YAO W, et al. Li2TiO3 and Li2ZrO3 co-modification LiNi0.8Co0.1Mn0.1O2 cathode material with improved high-voltage cycling performance for lithium-ion batteries. Solid State Ionics, 2020,349:115292.
DOI URL |
[1] | 王洋, 范广新, 刘培, 尹金佩, 刘宝忠, 朱林剑, 罗成果. 钾离子掺杂提高锂离子电池正极锰酸锂性能的微观机制[J]. 无机材料学报, 2022, 37(9): 1023-1029. |
[2] | 李永生, 陈玲. 可控制备磁性四氧化三铁-金纳米复合颗粒及其催化性能研究[J]. 无机材料学报, 2018, 33(2): 221-228. |
[3] | 王琦, 彭大春, 马倩, 何月德, 刘洪波. 炭包覆LiFePO4纳米片的制备及电化学性能研究[J]. 无机材料学报, 2018, 33(12): 1349-1354. |
[4] | 刘双宇, 徐 丽, 陈 新, 韩 钰, 刘海镇, 盛 鹏, 王 博, 赵广耀. 石墨烯负载团簇结构CoFe2O4及其电化学储锂性[J]. 无机材料学报, 2017, 32(9): 904-908. |
[5] | 孟方礼, 章冬云, 常程康, 徐家跃, KAMZIN A S. 基于铁粉还原的LiFePO4/C合成路径及其电化学性能研究[J]. 无机材料学报, 2016, 31(8): 802-806. |
[6] | 马国强, 温兆银, 王清松, 靳 俊, 吴相伟, 张敬超. CeO2纳米晶的添加对锂硫电池电化学性能的影响[J]. 无机材料学报, 2015, 30(9): 913-918. |
[7] | 陈飞彪, 王英男, 吴伯荣, 熊云奎, 廖维林, 吴 锋, 孙 喆. 锂硫电池石墨烯/硫复合正极材料的制备及其电化学性能[J]. 无机材料学报, 2014, 29(6): 627-632. |
[8] | 何月德, 简志敏, 刘洪波, 肖海河. 微扩层鳞片石墨负极材料的制备及电化学性能研究[J]. 无机材料学报, 2013, 28(9): 931-936. |
[9] | 刘 玲, 袁中直, 邱彩霞, 程思洁, 刘金成. 新型锂离子电池材料FeS2/VGCF的合成与电性能研究[J]. 无机材料学报, 2013, 28(12): 1291-1295. |
[10] | 陈 龙, 刘景东, 张诗群. 负载ZnS的介孔炭复合硫正极材料的制备及性能研究[J]. 无机材料学报, 2013, 28(10): 1127-1131. |
[11] | 刘双科, 许 静, 李德湛, 胡 芸, 谢 凯. 间苯二酚–甲醛辅助溶胶–凝胶法制备纳米Li2MnSiO4/C正极材料[J]. 无机材料学报, 2013, 28(06): 635-638. |
[12] | 郭德超, 曾燮榕, 邓 飞, 邹继兆, 盛洪超. 碳纳米管/微膨石墨复合负极材料的制备及电化学性能研究[J]. 无机材料学报, 2012, 27(10): 1035-1041. |
[13] | 华 宁, 王辰云, 康雪雅, 吐尔迪, 韩 英. 碳热还原法制备Zn掺杂的LiFePO4及其电化学性能[J]. 无机材料学报, 2010, 25(8): 887-892. |
[14] | 吕 岩, 王志永, 张 浩, 房 进, 曹高萍, 施祖进, 王碧燕. 电弧法制备石墨烯的孔结构和电化学性能研究[J]. 无机材料学报, 2010, 25(7): 725-728. |
[15] | 谢辉,周震涛. 锂离子电池正极材料LiMnyFe1-yPO4的制备及性能研究[J]. 无机材料学报, 2006, 21(3): 591-598. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||