无机材料学报 ›› 2021, Vol. 36 ›› Issue (2): 152-160.DOI: 10.15541/jim20200144 CSTR: 32189.14.10.15541/jim20200144
所属专题: 电致变色材料与器件; 功能材料论文精选(2021); 【虚拟专辑】电致变色与热致变色材料; 电致变色专栏2021
• 专栏: 电致变色材料与器件(特邀编辑:刁训刚, 王金敏) • 上一篇 下一篇
收稿日期:
2020-03-23
修回日期:
2020-07-09
出版日期:
2021-02-20
网络出版日期:
2020-09-09
通讯作者:
汪浩, 教授. E-mail: haowang@bjut.edu.cn作者简介:
周开岭(1990-), 男, 博士研究生. E-mail: zkling@emails.bjut.edu.cn
基金资助:
ZHOU Kailing(), WANG Hao, ZHANG Qianqian, LIU Jingbing, YAN Hui
Received:
2020-03-23
Revised:
2020-07-09
Published:
2021-02-20
Online:
2020-09-09
About author:
ZHOU Kailing(1990-), male, PhD candidate. E-mail: zkling@emails.bjut.edu.cn
Supported by:
摘要:
电致变色WO3的离子传输动力学过程对其变色性能和循环稳定性具有重要的影响。离子传输过程涉及到WO3电极的结构变形、相转变等复杂过程, 导致通过传统的电化学阻抗谱很难进行有效研究。计时电位法是通过施加电流, 测量电极材料响应电位的一种电化学表征方法。与其它电化学表征方法(阻抗谱法和伏安法)相比, 该技术能够直接探测溶液-电极系统中不同状态下的电压分布, 并经常被用于研究电极系统中的物质传输动力学行为, 例如电极表面附近的质子吸附和传输现象。本工作采用计时电位技术研究和调控WO3薄膜中的离子传输行为, 结果表明: 大的Li+离子插入通量可拓宽WO3/电解质界面处离子的传输通道, 有助于离子传输动力和光响应速度的提升。然而, 反复的离子插入/抽出行为会通过“离子球磨效应”减小WO3/电解质界面处WO3晶粒的尺寸, 使得WO3薄膜的致密性增强, 阻碍离子传输和电解质渗透, 导致插入的Li+及反应产生的LixWO3在WO3结构中不可逆积累, 薄膜的光学调制幅度和电致变色活性明显下降。该工作为电极材料中离子传输动力学分析和离子传输行为控制提供了一种有效的方法。
中图分类号:
周开岭, 汪浩, 张倩倩, 刘晶冰, 严辉. WO3电致变色薄膜离子传输动力过程及其循环稳定性[J]. 无机材料学报, 2021, 36(2): 152-160.
ZHOU Kailing, WANG Hao, ZHANG Qianqian, LIU Jingbing, YAN Hui. Dynamic Process of Ions Transport and Cyclic Stability of WO3 Electrochromic Film[J]. Journal of Inorganic Materials, 2021, 36(2): 152-160.
图1 WO3薄膜在2、10和20 mC·cm-2·s-1的不同离子插入通量下的电荷-时间曲线(a), 离子抽出过程响应电流-时间曲线(b), 离子注入过程响应电位-时间曲线(c)和原位透射率曲线(d)
Fig. 1 Charge-time curves (a), response current-time curves (b), response potential-time curves (c), and in-situ transmittance curves (d) of WO3 films under different ions insertion flux with 2, 10 and 20 mC·cm-2·s-1
图2 在不同的离子插入通量(a)2, (b)10和(c)20 mC·cm-2·s-1下离子抽出电流随循环的演变关系和循环过程中离子抽出电流密度对比(d)
Fig. 2 Evolution of current-time curves of WO3 film by fixing at 20.00 mC·cm-2 under different ions insertion flux with (a) 2, (b) 10, and (c) 20 mC·cm-2·s-1, and contrast of current density evolution (d)
图3 在不同的离子插入通量下(a)2, (b)10和(c)20 mC·cm-2·s-1 WO3膜的抽出电荷密度演变,以及循环过程中薄膜捕获的离子电荷密度的演变(d)
Fig. 3 Evolution of the extracted charge density of WO3 film under different ions insertion flux with (a) 2,(b) 10 and (c) 20 mC·cm-2·s-1, and evolution of trapped ions density upon cycling (d)
图4 在(a)2, (b)10和(c)20 mC·cm-2·s-1离子插入通量下WO3膜的电势-时间曲线的演变, 以及电位衰减的对比(d)
Fig. 4 Evolution of potential-time curves of WO3 film under different ions insertion flux with (a) 2, (b) 10 and (c) 20 mC·cm-2·s-1, and contrast of potentials decay (d)
图5 原位记录WO3在λ=550 nm的透过率演变(a), 在不同离子插入通量下(b)2,(c)10和(d)20 mC·cm-2·s-1, WO3膜的透过率随循环的变化关系
Fig. 5 In situ record of the transmittance of WO3 film at λ=550 nm during the electrochemical test (a) and the transmittance evolution of WO3 film under different ions insertion flux with (b) 2, (c) 10, and (d) 20 mC·cm-2·s-1
图6 不同状态下WO3薄膜的SEM照片
Fig. 6 SEM images of WO3 film with different conditions (a) WO3 film at the initial state; (b) WO3-2 film after 5000 cycles; (c) WO3-10 film after 5000 cycles; (d) WO3-20 film after 5000 cycles. The corresponding photographs are inserted
[1] | PENG M, DONG Y Z, SONG L X, et al. Structure and electrochromic properties of titanium-doped WO3 thin film by sputtering. Journal of Inorganic Materials, 2017,32(3):287-292. |
[2] | JIA H, XIANG C X, JIN P S. Advances in inorganic all-solid-state electrochromic materials and devices. Journal of Inorganic Materials, 2020,35(5):511-524. |
[3] | WANG J, KHOO E, LEE P S, et al. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. The Journal of Physical Chemistry C, 2008,112(37):14306-14312. |
[4] | ZHAO Q, FANG Y, QIAO K, et al. Printing of WO3/ITO nanocomposite electrochromic smart windows. Solar Energy Materials and Solar Cells, 2019,194:95-102. |
[5] | LU S J, ZHAO B W, WANG H, et al. Electrochromic properties of PEG-modified tungsten oxide thin films. Journal of Inorganic Materials, 2017,32(2):185-190. |
[6] | GARCIA-BELMONTE G, BUENO P R, FABREGAT-SANTIAGO F, et al. Relaxation processes in the coloration of amorphous WO3 thin films studied by combined impedance and electro-optical measurements. Journal of Applied Physics, 2004,96(1):853-859. |
[7] | HO C, RAISTRICK I, HUGGINS R. Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. Journal of The Electrochemical Society, 1980,127(2):343-350. |
[8] | MACDONALD J R. Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987,223(1/2):25-50. |
[9] | INABA H, IWAKU M, TATSUMA T, et al. Electrochemical intercalation of cations into an amorphous WO3 film and accompanying changes in mass and surface properties. Journal of Electroanalytical Chemistry, 1995,387(1/2):71-77. |
[10] | AU B, CHAN K, PANG W, et al. In effect of bias voltage on the electrochromic properties of WO3 films. Journal of Physics: Conference Series, 2019,1349:012040. |
[11] | BATHE S R, ILLA M S, NARAYAN R, et al. Electrochromism in polymer-electrolyte-enabled nanostructured WO3: active layer thickness and morphology on device performance. ChemNanoMat, 2018,4(2):203-212. |
[12] | BATHE S R, PATIL P. Electrochromic characteristics of fibrous reticulated WO3 thin films prepared by pulsed spray pyrolysis technique. Solar Energy Materials and Solar Cells, 2007,91(12):1097-1101. |
[13] | ZHOU K, WANG H, ZHANG Y, et al. Understand the degradation mechanism of electrochromic WO3 films by double-step chronoamperometry and chronocoulometry techniques combined with in situ spectroelectrochemical study. Electroanalysis, 2017,29(6):1573-1585. |
[14] | DAUTREMONT-SMITH W, GREEN M, KANG K S. Optical and electrical properties of thin films of WO3 electrochemically coloured. Electrochimica Acta, 1977,22(7):751-759. |
[15] | BAECK S H, CHOI K S, JARAMILLO T F, et al. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Advanced Materials, 2003,15(15):1269-1273. |
[16] | DEEPA M, SRIVASTAVA A, SOOD K, et al. Nanostructured mesoporous tungsten oxide films with fast kinetics for electrochromic smart windows. Nanotechnology, 2006,17(10):2625. |
[17] | KROL J J, STRATHMANN H, WESSLING M. Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes. Journal of Membrane Science, 1999,162(1/2):155-164. |
[18] | PISMENSKAIA N, SISTAT P, HUGUET P, et al. Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. Journal of Membrane Science, 2004,228(1):65-76. |
[19] | SISTAT P, POURCELLY G. Chronopotentiometric response of an ion-exchange membrane in the underlimiting current-range. Transport phenomena within the diffusion layers. Journal of Membrane Science, 1997,123(1):121-131. |
[20] | BARD A J, FAULKNER L R. Electrochemical Methods: Fundamentals and Applications. New Jersey: Wiley, 1980: 669-676. |
[21] | SAWYER D T, ROBERTS J L. Experimental Electrochemistry for Chemists. Wiley, 1974: 1765-1766. |
[22] | ZHOU K, WANG H, ZHANG Y, et al. An advanced technique to evaluate the electrochromic performances of NiO films by multi-cycle double-step potential chronocoulometry. Journal of The Electrochemical Society, 2016,163(10):H1033-H1040. |
[23] | WEN R T, GRANQVIST C G, NIKLASSON G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nature Materials, 2015,14(10):996-1001. |
[24] | ZHOU K, WANG H, LIU J, et al. The mechanism of trapped ions eroding the electrochromic performances of WO3 thin films. International Journal Electrochemical Science, 2018,13:7335-7346. |
[25] | LEE S H, DESHPANDE R, PARILLA P, et al. Crystalline WO3 nanoparticles for highly improved electrochromic applications. Advanced Materials, 2006,18(6):763-766. |
[26] |
SCHERER M R, STEINER U. Efficient electrochromic devices made from 3D nanotubular gyroid networks. Nano Letters, 2012,13(7):3005-3010.
DOI URL PMID |
[27] | BISQUERT J, VIKHRENKO V S. Analysis of the kinetics of ion intercalation: two state model describing the coupling of solid state ion diffusion and ion binding processes. Electrochimica Acta, 2003,47(24):3977-3988. |
[28] | BISQUERT J. Analysis of the kinetics of ion intercalation: ion trapping approach to solid-state relaxation processes. Electrochimica Acta, 2002,47(15):2435-2449. |
[29] | HASHIMOTO S, MATSUOKA H. Lifetime of electrochromism of amorphous WO3-TiO2 thin films. Journal of The Electrochemical Society, 1991,138(8):2403. |
[30] | HASHIMOTO S, MATSUOKA H, KAGECHIKA H, et al. Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte. Journal of The Electrochemical Society, 1990,137(4):1300. |
[31] | HEPEL M, REDMOND H, DELA I. Electrochromic WOx films with reduced lattice deformation stress and fast response time. Electrochimica Acta, 2007,52(11):3541-3549. |
[32] | KONDALKAR V V, PATIL P B, MANE R M, et al. Electrochromic performance of nickel oxide thin film: synthesis via electrodeposition technique. Macromolecular Symposia, 2016,361(1):47-50. |
[33] |
WEN R T, NIKLASSON G A, GRANQVIST C G. Sustainable rejuvenation of electrochromic WO3 films. ACS Applied Materials & Interfaces, 2015,7(51):28100.
URL PMID |
[34] | ZELLER H, BEYELER H. Electrochromism and local order in amorphous WO3. Applied Physics, 1977,13(3):231-237. |
[35] | GABRUSENOKS J, CIKMACH P, LUSIS A, et al. Electrochromic colour centres in amorphous tungsten trioxide thin films. Solid State Ionics, 1984,14(1):25-30. |
[36] | HEPEL M, REDMOND H, DELA I. Electrochromic WO3-x films with reduced lattice deformation stress and fast response time. Electrochimica Acta, 2007,52(11):3541-3549. |
[37] | BUENO P, FARIA R, AVELLANEDA C, et al. Li+ insertion into pure and doped amorphous WO3 films. Correlations between coloration kinetics, charge and mass accumulation. Solid State Ionics, 2003,158(3/4):415-426. |
[1] | 王晓波, 朱于良, 薛稳超, 史汝川, 骆柏锋, 罗骋韬. PT含量变化对PMN-PT单晶的大功率性能影响[J]. 无机材料学报, 2025, 40(7): 840-846. |
[2] | 汤新丽, 丁自友, 陈俊锐, 赵刚, 韩颖超. 基于稀土铕离子荧光标记的磷酸钙纳米材料体内分布与代谢研究[J]. 无机材料学报, 2025, 40(7): 754-764. |
[3] | 余乐洋阳, 赵芳霞, 张舒心, 徐以祥, 牛亚然, 张振忠, 郑学斌. 感应等离子球化技术制备喷涂用高熵硼化物粉体[J]. 无机材料学报, 2025, 40(7): 808-816. |
[4] | 杨光, 张楠, 陈舒锦, 王义, 谢安, 严育杰. 基于多孔ITO电极的WO3薄膜的制备及其电致变色性能[J]. 无机材料学报, 2025, 40(7): 781-789. |
[5] | 孙晶, 李翔, 毛小建, 章健, 王士维. 月桂酸改性剂对氮化铝粉体抗水解性能的影响[J]. 无机材料学报, 2025, 40(7): 826-832. |
[6] | 柴润宇, 张镇, 王孟龙, 夏长荣. 直接组装法制备氧化铈基金属支撑固体氧化物燃料电池[J]. 无机材料学报, 2025, 40(7): 765-771. |
[7] | 王鲁杰, 张玉新, 李彤阳, 于源, 任鹏伟, 王建章, 汤华国, 姚秀敏, 黄毅华, 刘学建, 乔竹辉. 深海服役环境下碳化硅陶瓷材料的腐蚀及磨损行为[J]. 无机材料学报, 2025, 40(7): 799-807. |
[8] | 李文元, 徐佳楠, 邓瀚澳, 常爱民, 张博. 钒取代对LaTaO4陶瓷微观结构和微波介电性能的影响[J]. 无机材料学报, 2025, 40(6): 697-703. |
[9] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[10] | 董晨雨, 郑维杰, 马一帆, 郑春艳, 温峥. 压电力显微镜表征Pb(Mg,Nb)O3-PbTiO3超薄膜弛豫特性[J]. 无机材料学报, 2025, 40(6): 675-682. |
[11] | 何国强, 张恺恒, 王震涛, 包健, 席兆琛, 方振, 王昌昊, 王威, 王鑫, 姜佳沛, 李祥坤, 周迪. Ba(Nd1/2Nb1/2)O3: 一种被低估的K40微波介质陶瓷[J]. 无机材料学报, 2025, 40(6): 639-646. |
[12] | 张家维, 陈宁, 程原, 王博, 朱建国, 金城. Bi4Ti3O12铋层状压电陶瓷的A/B位掺杂及其电学性能[J]. 无机材料学报, 2025, 40(6): 690-696. |
[13] | 崔宁, 张玉新, 王鲁杰, 李彤阳, 于源, 汤华国, 乔竹辉. (TiVNbMoW)Cx高熵陶瓷的单相形成过程与碳空位调控[J]. 无机材料学报, 2025, 40(5): 511-520. |
[14] | 熊思宇, 莫尘, 朱肖伟, 朱国斌, 陈德钦, 刘来君, 施晓东, 李纯纯. 超低介电常数LiBxAl1-xSi2O6微波介质陶瓷的低温烧结[J]. 无机材料学报, 2025, 40(5): 536-544. |
[15] | 安然, 林锶, 郭世刚, 张冲, 祝顺, 韩颖超. 铁掺杂纳米羟基磷灰石的制备及紫外吸收性能研究[J]. 无机材料学报, 2025, 40(5): 457-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||