无机材料学报

• 研究论文 •    

月桂酸改性剂对氮化铝粉体抗水解性能的影响

孙晶1,2, 李翔1, 毛小建2, 章健2, 王士维2   

  1. 1.上海理工大学 材料与化学学院, 上海 200093;
    2.中国科学院 上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050
  • 收稿日期:2025-02-17 修回日期:2025-04-02
  • 作者简介:孙 晶(2001-), 女, 硕士研究生 E-mail: sunjingwuhu@163.com
  • 基金资助:
    国家自然科学基金(U23A6014, 52272076, 52072245)

Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders

SUN Jing1,2, LI Xiang1, MAO Xiaojian2, ZHANG Jian2, WANG Shiwei2   

  1. 1. School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China;
    2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, China
  • Received:2025-02-17 Revised:2025-04-02
  • About author:SUN Jing (2001–), female, Master candidate. E-mail: sunjingwuhu@163.com
  • Supported by:
    National Natural Science Foundation of China (U23A6014, 52272076, 52072245)

摘要: 氮化铝(AlN)陶瓷具有优异的热学和电学性能,在电子封装和集成电路领域展现出极为广阔的应用前景。然而,AlN粉体易水解生成Al(OH)3,在陶瓷烧结过程中,Al(OH)3热解成Al2O3,造成AlN陶瓷氧含量升高和热导率下降,这严重制约了AlN陶瓷的制备和实际应用。因此,AlN粉末的表面改性对其抗水解性能的提升至关重要。本研究使用聚乙二醇(Polyethylene Glycol, PEG)与月桂酸(Lauric Acid, LA)对AlN粉体进行表面改性以提升其抗水解性能,通过简单的湿法球磨工艺,使LA包覆在AlN粉体表面。FT-IR和XPS分析证实,LA羧基(-COOH)与AlN表面羟基氧化层发生类酯化反应,形成化学键合的酯基。TEM表征结果显示,酯化改性后的AlN粉体表面成功形成厚度为12.2~16.1 nm的包覆层。将改性后AlN粉体置于40 ℃水中72 h以上,悬浮液pH维持在9以下,物相结构和微观形貌均未发生变化。该包覆层化学性质稳定且具有低水溶性,水分子难以通过扩散穿透包覆层引发水解反应。随着LA添加量的增加,AlN粉体抗水解性能显著提升。本研究为提升AlN粉体抗水解性能及制备高性能AlN陶瓷提供了新途径。

关键词: 月桂酸, 氮化铝粉体, 抗水解, 表面改性

Abstract: Aluminum nitride (AlN) ceramics exhibit exceptional thermal and electrical properties, making them highly promising candidates for electronic packaging applications and integrated circuits. Nevertheless, the hydrolysis of AlN powder results in the formation of Al(OH)3, which subsequently decomposes into Al2O3 during the subsequent sintering process. This reaction increases oxygen content, thereby degrading the thermal conductivity of AlN ceramics and further imposing significant limitations on their processing and utilization. Consequently, surface modification of AlN powder is imperative to improve its hydrolysis resistance. In this work, a dual-agent modification strategy utilizing polyethylene glycol (PEG) and lauric acid (LA) was implemented through a straightforward wet ball-milling protocol, successfully forming a chemically bonded encapsulation layer on AlN particles. FT-IR and XPS analyses verified that carboxyl groups (-COOH) of LA engaged in esterification reactions with hydroxyl groups on the oxidized AlN surface, leading to the formation of robust ester linkages. TEM images revealed a continuous encapsulation layer with a thickness ranging from 12.2 nm to 16.1 nm. Remarkably, the modified powder maintained a solution pH below 9 after 72 h immersion in water at 40 ℃, with no discernible alterations in phase composition and microscopic morphology. This chemically stable, low-solubility encapsulation layer effectively obstructs water diffusion pathways, thereby suppressing hydrolysis kinetics. Enhanced hydrolysis resistance was positively correlated with LA dosage. Our findings propose an innovative encapsulation-based paradigm for developing hydrolysis-resistant AlN powders and advancing high-performance ceramic fabrication.

Key words: lauric acid, aluminum nitride powder, hydrolysis resistance, surface modification

中图分类号: