无机材料学报 ›› 2025, Vol. 40 ›› Issue (7): 754-764.DOI: 10.15541/jim20240504
汤新丽1(), 丁自友1, 陈俊锐1, 赵刚2, 韩颖超1(
)
收稿日期:
2024-12-03
修回日期:
2025-01-17
出版日期:
2025-07-20
网络出版日期:
2025-02-13
通讯作者:
韩颖超, 教授. E-mail: hanyingchao@whut.edu.cn作者简介:
汤新丽(1999-), 女, 硕士研究生. E-mail: tangxinli9@163.com
基金资助:
TANG Xinli1(), DING Ziyou1, CHEN Junrui1, ZHAO Gang2, HAN Yingchao1(
)
Received:
2024-12-03
Revised:
2025-01-17
Published:
2025-07-20
Online:
2025-02-13
Contact:
HAN Yingchao, professor. E-mail: hanyingchao@whut.edu.cnAbout author:
TANG Xinli (1999-), female, Master candidate. E-mail: tangxinli9@163.com
Supported by:
摘要:
纳米磷酸钙(nCaP)在药物递送、生物成像、抗菌、促成骨等纳米医学领域具有潜在的应用前景, 但其体内分布与代谢规律尚未完全明确, 有待深入研究。本研究采用稀土铕离子荧光标记法, 以荷瘤裸鼠为模型, 探究了两种尺寸nCaP(纳米点NDs: (2.53±0.63) nm; 纳米颗粒NPs: (107.76±25.37) nm×(17.66±1.63) nm)在肝、脾、肺、肾、肿瘤中的分布与代谢。结果显示, 裸鼠尾静脉注射200 μL质量浓度为1.5 mg/mL的两种nCaP溶液, 4 h后CaP NPs主要分布在肝脏和脾脏中, 分别占比65.70%和29.32%, 在肺脏中占比3.83%, 而在肾脏和肿瘤中仅占比0.84%和0.32%, 表明大尺寸CaP NPs更容易被网状内皮(RES)系统中的吞噬细胞捕获。与CaP NPs相比, CaP NDs在肝脏、脾脏和肺脏中的积聚显著减少了89.40%、87.00%和88.89%, 而在肾脏和肿瘤中的蓄积分别提升了3.67倍和3.06倍, 表明尺寸减小有利于CaP NDs被肾小球滤出并增强其肿瘤靶向能力。CaP NDs在肝、脾、肺中的清除率(CLz)分别是CaP NPs的6.60倍、4.14倍和2.40倍, 是肾脏的42.29%, 表明尺寸减小有助于CaP NDs被肝脏、脾脏和肺脏内的吞噬细胞迅速代谢, 但存在肾小管的重吸收作用。在肿瘤中CaP NDs的CLz值比CaP NPs降低了91.9%, 表明小尺寸CaP NDs具有显著增强的肿瘤靶向和滞留能力。进一步对荷瘤裸鼠初步建立了包含尺寸因素的nCaP生理药代动力学(PBPK)模型, CaP NDs和CaP NPs在肿瘤部位分布的预测拟合度(R2)分别达到0.925和0.827。本研究揭示了nCaP的体内分布与代谢规律, 为其医学应用提供了支撑。
中图分类号:
汤新丽, 丁自友, 陈俊锐, 赵刚, 韩颖超. 基于稀土铕离子荧光标记的磷酸钙纳米材料体内分布与代谢研究[J]. 无机材料学报, 2025, 40(7): 754-764.
TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions[J]. Journal of Inorganic Materials, 2025, 40(7): 754-764.
图2 CaP NDs和CaP NPs的表征
Fig. 2 Characterizations of CaP NDs and CaP NPs (a-d) TEM images of CaP NDs (a), Eu:CaP NDs (b), CaP NPs (c), and Eu:CaP NPs (d); (e, f) Particle size statistical distributions of CaP NDs (e) and Eu:CaP NDs (f); (g-j) Length (g, i) and width (h, j) of CaP NPs (g, h) and Eu:CaP NPs (i, j); (k) DLS particle size distribution; (l) XRD patterns; (m) FT-IR spectra; (n) Europium ion release curves of Eu:CaP NDs and Eu:CaP NPs
Sample | Value | Ca/(mg·L-1) | P/(mg·L-1) | Eu/(mg·L-1) | (Eu/(Ca+Eu))/% | (Ca+Eu)/P |
---|---|---|---|---|---|---|
Eu:CaP NDs | Actual | 8.72 | 4.53 | 2.82 | 7.86 | 1.61 |
Theoretical | — | — | — | 8.00 | 1.67 | |
Eu:CaP NPs | Actual | 22.50 | 11.85 | 7.23 | 7.82 | 1.59 |
Theoretical | — | — | — | 8.00 | 1.67 |
表1 Eu:CaP NDs和Eu:CaP NPs中元素含量及摩尔比
Table 1 Elemental content and molar ratio of Eu:CaP NDs and Eu:CaP NPs
Sample | Value | Ca/(mg·L-1) | P/(mg·L-1) | Eu/(mg·L-1) | (Eu/(Ca+Eu))/% | (Ca+Eu)/P |
---|---|---|---|---|---|---|
Eu:CaP NDs | Actual | 8.72 | 4.53 | 2.82 | 7.86 | 1.61 |
Theoretical | — | — | — | 8.00 | 1.67 | |
Eu:CaP NPs | Actual | 22.50 | 11.85 | 7.23 | 7.82 | 1.59 |
Theoretical | — | — | — | 8.00 | 1.67 |
图3 CaP NDs和CaP NPs的生物安全性评价
Fig. 3 Biosafety evaluation of CaP NDs and CaP NPs (a) Cell viability; (b) Hemolysis rate; (c, d) Blood biochemistry analysis (ALT indicates alanine transaminase, AST indicates aspartate aminotransferase, CR indicates creatinine, and BUN indicates blood urea nitrogen); (e) H&E staining images of heart, liver, spleen, lung, and kidney organs in different groups with scale bar indicating 100 μm; (f) CLSM images of BMSC co-cultured with CaP NPs and CaP NDs for 24 h, respectively. Red: CaP NPs or CaP NDs fluorescence image excited at 458 nm. Blue: Cell nuclei stained with DAPI. Scale bar in (f) is 50 μm. Colorful figures are available on website
图4 注射不同时间后CaP NDs和CaP NPs在不同组织中的分布
Fig. 4 Biodistributions of CaP NDs and CaP NPs in different tissues after injection for different durations Colorful figures are available on website
图5 CaP NDs和CaP NPs在不同组织中的代谢
Fig. 5 CaP NDs and CaP NPs metabolic patterns in different tissues (a-e) Biodistributions of CaP NDs and CaP NPs in liver (a), spleen (b), lung (c), kidney (d), and tumor (e); (f) Clearance rate of CaP NDs and CaP NPs in different tissues
Sample | Parameter | Liver | Spleen | Lung | Kidney | Tumor |
---|---|---|---|---|---|---|
CaP NDs | AUC(0-t)/(mg·h·L-1) | 157.78 | 71.35 | 19.34 | 70.61 | 20.31 |
CLz/(L·h-1·kg-1) | 0.033 | 0.091 | 0.235 | 0.144 | 0.146 | |
CaP NPs | AUC(0-t)/(mg·h·L-1) | 1347.46 | 578.05 | 66.74 | 19.85 | 6.07 |
CLz/(L·h-1·kg-1) | 0.005 | 0.022 | 0.098 | 0.341 | 1.796 |
表2 CaP NDs和CaP NPs荷瘤小鼠各脏器和肿瘤部位的主要药动学参数
Table 2 Pharmacokinetic parameters of CaP NDs and CaP NPs in organ and tumor site of tumor-bearing mice
Sample | Parameter | Liver | Spleen | Lung | Kidney | Tumor |
---|---|---|---|---|---|---|
CaP NDs | AUC(0-t)/(mg·h·L-1) | 157.78 | 71.35 | 19.34 | 70.61 | 20.31 |
CLz/(L·h-1·kg-1) | 0.033 | 0.091 | 0.235 | 0.144 | 0.146 | |
CaP NPs | AUC(0-t)/(mg·h·L-1) | 1347.46 | 578.05 | 66.74 | 19.85 | 6.07 |
CLz/(L·h-1·kg-1) | 0.005 | 0.022 | 0.098 | 0.341 | 1.796 |
图6 肿瘤部位PBPK模型的建立与优化
Fig. 6 Establishment and optimization of PBPK model for tumor bearing sites (a, b) PBPK model of CaP NDs (a) and CaP NPs (b) in the tumor; (c, d) Linear regression results between logarithmically transformed measured and simulated concentrations of CaP NDs (c) and CaP NPs (d) with R2 indicating the correlation coefficient; (e) Prediction of the distribution of nCaP with different sizes in tumor
[1] | SOKOLOVA V, EPPLE M. Biological and medical applications of calcium phosphate nanoparticles. Chemistry - A European Journal, 2021, 27(27): 7471. |
[2] |
LI B, XU W F, LIAO X L. Research progress in calcium phosphate microspheres for bone defect repair. Journal of Inorganic Materials, 2014, 29(10): 1009.
DOI |
[3] | CHEN X, LI H Z, MA Y H, et al. Calcium phosphate-based nanomaterials: preparation, multifunction, and application for bone tissue engineering. Molecules, 2023, 28(12): 4790. |
[4] | NIE L, HOU M J, WANG T W, et al. Nanostructured selenium- doped biphasic calcium phosphate with in situ incorporation of silver for antibacterial applications. Scientific Reports, 2020, 10: 13738. |
[5] | 刘静霆, 韩颖超, 李世普, 等. 羟基磷灰石纳米粒子负载阿霉素的体外抗肿瘤活性研究. 中国生物医学工程学报, 2008, 27(4): 572. |
[6] | CHEN F, HUANG P, ZHU Y J, et al. Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging. Biomaterials, 2012, 33(27): 6447. |
[7] | LI C Y, DING Z Y, HAN Y C. In vitro antibacterial and osteogenic properties of manganese doped nano hydroxyapatite. Journal of Inorganic Materials, 2024, 39(3): 313. |
[8] |
LI C Y, DING Z Y, HAN Y C. Mn-doped nano-hydroxyapatites as theranostic agents with tumor pH-amplified MRI-signal capabilities for guiding photothermal therapy. International Journal of Nanomedicine, 2023, 18: 6101.
DOI PMID |
[9] | JACOBS A, RENAUDIN G, CHARBONNEL N, et al. Copper- doped biphasic calcium phosphate powders: dopant release, cytotoxicity and antibacterial properties. Materials, 2021, 14(9): 2393. |
[10] |
ZHAO R B, REN X Y, XIE C G, et al. Towards understanding the distribution and tumor targeting of sericin regulated spherical calcium phosphate nanoparticles. Microscopy Research and Technique, 2017, 80(3): 321.
DOI PMID |
[11] | KOLLENDA S A, KLOSE J, KNUSCHKE T, et al. In vivo biodistribution of calcium phosphate nanoparticles after intravascular, intramuscular, intratumoral, and soft tissue administration in mice investigated by small animal PET/CT. Acta Biomaterialia, 2020, 109: 244. |
[12] | ADAMIANO A, IAFISCO M, SANDRI M, et al. On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging. Acta Biomaterialia, 2018, 73: 458. |
[13] | ÁLAMO P, PALLARÈS V, CÉSPEDES M V, et al. Fluorescent dye labeling changes the biodistribution of tumor-targeted nanoparticles. Pharmaceutics, 2020, 12(11): 1004. |
[14] | ALTINOǦLU E I, RUSSIN T J, KAISER J M, et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano, 2008, 2(10): 2075. |
[15] | LLOP J, GÓMEZ-VALLEJO V, GIBSON N. Quantitative determination of the biodistribution of nanoparticles: could radiolabeling be the answer? Nanomedicine, 2013, 8(7): 1035. |
[16] | JEONG H J, LEE B C, AHN B C, et al. Development of drugs and technology for radiation theragnosis. Nuclear Engineering and Technology, 2016, 48(3): 597. |
[17] | LI P Z, WANG D D, HU J, et al. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Advanced Drug Delivery Reviews, 2022, 189: 114447. |
[18] | WANG T T, ZHANG D, SUN D, et al. Current status of in vivo bioanalysis of nano drug delivery systems. Journal of Pharmaceutical Analysis, 2020, 10(3): 221. |
[19] | XIE Y F, PERERA T S H, LI F, et al. Quantitative detection method of hydroxyapatite nanoparticles based on Eu3+ fluorescent labeling in vitro and in vivo. ACS Applied Materials & Interfaces, 2015, 7(43): 23819. |
[20] | HAN Y C,XING Q G, WANG X Y. Quantitative detection method of rare earth doped calcium phosphate fluorescent nanometer particles in organisms: US921123B2. 2024-03-05. |
[21] | DING Z Y, XING Q G, FAN Y R, et al. Polyacrylic acid complexes to mineralize ultrasmall europium-doped calcium phosphate nanodots for fluorescent bioimaging. Materials & Design, 2022, 221: 111008. |
[22] | LE A D, WEARING H J, LI D S. Streamlining physiologically- based pharmacokinetic model design for intravenous delivery of nanoparticle drugs. CPT: Pharmacometrics & Systems Pharmacology, 2022, 11(4): 409. |
[23] | DENG L J, LIU H, MA Y S, et al. Endocytosis mechanism in physiologically-based pharmacokinetic modeling of nanoparticles. Toxicology and Applied Pharmacology, 2019, 384: 114765. |
[24] | LI M, ZOU P, TYNER K, et al. Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles. The AAPS Journal, 2017, 19(1): 26. |
[25] | CHENG Y H, HE C L, RIVIERE J E, et al. Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. ACS Nano, 2020, 14(3): 3075. |
[26] | ZHANG S Q, MA X Y, SHA D Y, et al. A novel strategy for tumor therapy: targeted, PAA-functionalized nano-hydroxyapatite nanomedicine. Journal of Materials Chemistry B, 2020, 8(41): 9589. |
[27] | CHENG X, XU Y R, ZHANG Y, et al. Glucose-targeted hydroxyapatite/indocyanine green hybrid nanoparticles for collaborative tumor therapy. ACS Applied Materials & Interfaces, 2021, 13(31): 37665. |
[28] | BERNIER A, TOBIAS T, NGUYEN H, et al. Vascular and blood compatibility of engineered cationic cellulose nanocrystals in cell-based assays. Nanomaterials, 2021, 11(8): 2072. |
[29] | SREENIVASAGAN S, SUBRAMANIAN A K, MOHANRAJ K G, et al. Assessment of toxicity of green synthesized silver nanoparticle-coated titanium mini-implants with uncoated mini- implants: comparison in an animal model study. The Journal of Contemporary Dental Practice, 2024, 24(12): 944. |
[30] |
高绪聪, 柴振海, 张宗鹏. 药物性肝损伤的生物标志物及其评价的研究进展. 中国药理学与毒理学杂志, 2012, 26(5): 692.
DOI |
[31] |
KASHANI K, ROSNER M H, OSTERMANN M. Creatinine: from physiology to clinical application. European Journal of Internal Medicine, 2020, 72: 9.
DOI PMID |
[32] | ALMEIDA J P M, CHEN A L, FOSTER A, et al. In vivo biodistribution of nanoparticles. Nanomedicine, 2011, 6(5): 815. |
[33] |
祁禹鸣, 徐铭泽, 杜步婕. 纳米材料在肾脏中的应用与清除机制. 广州医药, 2023, 54(1): 1.
DOI |
[34] | CHOI J S, CAO J F, NAEEM M, et al. Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition. Colloids and Surfaces B: Biointerfaces, 2014, 122: 545. |
[35] | LEDFORD B T, WYATT T G, VANG J, et al. Effects of particle size, charge, shape, animal disease state, and sex on the biodistribution of intravenously administered nanoparticles. Particle & Particle Systems Characterization, 2023, 40(7): 2300001. |
[36] | MELLOR R D, UCHEGBU I F. Ultrasmall-in-nano: why size matters. Nanomaterials, 2022, 12(14): 2476. |
[37] | WEI Y C, QUAN L, ZHOU C, et al. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine, 2018, 13(12): 1495. |
[38] |
TANG L, YANG X J, YIN Q, et al. Investigating the optimal size of anticancer nanomedicine. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15344.
DOI PMID |
[39] | WANG J, LIU G. Imaging nano-bio interactions in the kidney: toward a better understanding of nanoparticle clearance. Angewandte Chemie International Edition, 2018, 57(12): 3008. |
[40] | ZHAO Y T, WANG Y, RAN F, et al. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Scientific Reports, 2017, 7: 4131. |
[41] | 董立乐.几种硫属及稀土纳米材料的制备与癌症诊疗探索. 合肥: 中国科学技术大学博士学位论文, 2019. |
[1] | 王新健, 朱逸璇, 张鹏, 杨文龙, 王挺, 郇宇. (Ba0.85Ca0.15)(Ti0.9Zr0.1-xSnx)O3无铅压电陶瓷的相结构与压电性能[J]. 无机材料学报, 2022, 37(5): 513-519. |
[2] | 甘琼枝, 张冲宇, 欧阳健明. 二水草酸钙晶体尺寸对非洲绿猴肾上皮细胞的损伤差异比较[J]. 无机材料学报, 2016, 31(3): 317-323. |
[3] | 刘国钦,赖奇,李玉峰. 膨胀石墨的尺寸效应[J]. 无机材料学报, 2007, 22(5): 985-990. |
[4] | 赵艳,王宝祥,赵晓鹏. Cr离子改性氧化钛/丙烯酰胺纳米电流变液及其性能研究[J]. 无机材料学报, 2006, 21(3): 671-676. |
[5] | 鲁圣国,李标荣,麦炽良,黄健洪. 铁电纳米材料的制备、性能和应用前景[J]. 无机材料学报, 2004, 19(6): 1231-1239. |
[6] | 彭子龙,李佐宜,胡强,杨晓非. (Ni0.81Fe0.19)0.66Cr0.34/Ni0.81Fe0.19薄膜的各向异性磁电阻效应及尺寸效应[J]. 无机材料学报, 2002, 17(2): 321-325. |
[7] | 栾伟玲,高濂,郭景坤. 细晶粒BaTiO3陶瓷的微结构及介电性能测试[J]. 无机材料学报, 2000, 15(6): 1043-1049. |
[8] | 张青红,高濂,郭景坤. 量子尺寸氧化钛纳米晶的制备及其光谱研究[J]. 无机材料学报, 2000, 15(5): 929-934. |
[9] | 董文庭,朱从善. 掺杂PbS纳米粒子的有机改性硅酸盐玻璃[J]. 无机材料学报, 1999, 14(4): 548-552. |
[10] | 金炎,金蕾,蒋雪茵,张志林,许少鸿. 两种发光中心掺杂的ZnS纳米微晶研究[J]. 无机材料学报, 1998, 13(2): 225-228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||