无机材料学报 ›› 2020, Vol. 35 ›› Issue (1): 19-28.DOI: 10.15541/jim20190272 CSTR: 32189.14.10.15541/jim20190272
所属专题: MAX相和MXene材料; 副主编黄庆研究员专辑; 计算材料论文精选(2020); 【虚拟专辑】分离膜,复相陶瓷(2020~2021)
黄烨琰1,2,徐凯1,吴波2,李朋1,常可可1(),黄峰1,黄庆1
收稿日期:
2019-06-03
修回日期:
2019-07-22
出版日期:
2020-01-20
网络出版日期:
2019-10-23
作者简介:
黄烨琰(1995-), 女, 博士研究生. E-mail:huangyeyan@nimte.ac.cn
基金资助:
HUANG Ye-Yan1,2,XU Kai1,WU Bo2,LI Peng1,CHANG Ke-Ke1(),HUANG Feng1,HUANG Qing1
Received:
2019-06-03
Revised:
2019-07-22
Published:
2020-01-20
Online:
2019-10-23
About author:
HUANG Ye-Yan(1995-), female, PhD candidate. E-mail:huangyeyan@nimte.ac.cn
Supported by:
摘要:
相图, 又称相平衡图, 是“材料设计的索骥图”, 而涂层的制备过程中(如物理气相沉积, Physical Vapor Deposition, 简称PVD), 系统一般远离平衡态, 获得的相为亚稳相, 相图计算CALPHAD (CALculation of PHAse Diagrams)方法的应用遇到了挑战。本文概述了模拟涂层材料亚稳相图的研究历程, 重点介绍了近期建立的临界表面扩散亚稳相图模型, 即通过耦合CALPHAD、第一性原理计算和高通量磁控溅射镀膜实验的方法对涂层材料的亚稳相进行表面扩散模拟, 相关计算仅需要一个高通量镀膜实验作为基础数据, 获得的亚稳相图也得到了实验验证。由此, 可以建立相关材料体系的稳定和亚稳相图数据库, 通过组分-制备工艺-组织结构和性能的关系, 指导陶瓷涂层材料的设计, 助推研发时间和成本“双减半”目标的实现。
中图分类号:
黄烨琰, 徐凯, 吴波, 李朋, 常可可, 黄峰, 黄庆. 亚稳相图研究及其在特种陶瓷涂层中的应用进展[J]. 无机材料学报, 2020, 35(1): 19-28.
HUANG Ye-Yan, XU Kai, WU Bo, LI Peng, CHANG Ke-Ke, HUANG Feng, HUANG Qing. Review on Metastable Phase Diagrams: Application Roles in Specialty Ceramic Coatings[J]. Journal of Inorganic Materials, 2020, 35(1): 19-28.
图1 TiAlN体系的相图 (a)稳态TiN-AlN伪二元相图[61], Al在fcc相中的固溶度可以忽略不计; (b)不同计算方法获得fcc-Ti1-xAlxN涂层中Al的固溶度(xmax)与实验值[35-37, 40-41, 49-52, 61-66]的对比
Fig. 1 The phase diagram of TiAlN (a) The stable TiN-AlN pseudo binary phase diagram[61], among which the Al solubilities of fcc phase is negligible; (b) The critical Al solubilities (xmax) in Ti1-xAlxN by different calculation methods compared with the experimental data[35-37, 40-41, 49-52, 61-66]
图3 室温沉积涂层获得的相结构与平衡相图的对比 (a) Al-Cu[59,71]; (b)Al-Ni[59,72]; (c)Al-Fe[59,70]
Fig. 3 Structure of the coatings deposited at room temperature compared with the phase diagrams of (a) Al-Cu[59,71], (b) Al-Ni[59,72] and (c) Al-Fe[59,70]
图4 Saunders和Miodownik[60]根据扩散公式得到的扩散距离与温度的关系(a) Cu-11.5at% Sn和 (b) Cu-19.5at% Sn及(c) Cu-Sn体系的稳态相图[73]
Fig. 4 (a) Diffusion distance versus temperature of Cu-11.5at% Sn obtained by Saunders and Miodownik[60] based on diffusion equation; (b) Diffusion distance versus temperature of Cu-19.5at% Sn[60] obtained by Saunders and Miodownik based on diffusion equation; (c) Phase diagram of the Cu-Sn system[73]
图6 (a)计算预测的Cu-W体系亚稳相图与实验数据的对比[58]; (b)计算预测的Cu-V体系亚稳相图与实验数据的对比[58]; (c) Cu-W体系的稳态相图[74]; (d) Cu-V体系的稳态相图[75]
Fig. 6 (a) Calculated and predicted metastable Cu-W phase formation diagram compared with the experimental data[58]; (b) Calculated and predicted metastable Cu-V phase formation diagram compared with the experimental data[58]; (c) Phase diagram of the Cu-W system[74]; (d) Phase diagram of the Cu-V system[75]
图7 (a) Pt-Ir体系的稳态相图[86]; (b) Pt-Au体系的稳态相图[87]; (c) Pt-Ir体系的镀膜实验结果[85]; (d) Pt-Au体系的镀膜实验结果[85]
Fig. 7 (a) Phase diagram of the Pt-Ir[86] system; (b) Phase diagram of the Pt-Au system[87]; (c) Phase formation of the Pt-Ir[85] sputtered thin films; (d) Phase formation of the Pt-Au[85] sputtered thin films
图8 Ti1-xAlxN亚稳相图 (a)预测的亚稳相图[61], 不同颜色的曲线代表不同的磁控溅射能量密度; (b)预测亚稳相图与能量密度为2.3 W?cm-2,温度在100~550 ℃的实验数据对比[61]; (c)预测亚稳相图与能量密度为4.6 W?cm-2, 温度在100~550 ℃的实验数据对比; (d)预测亚稳相图与能量密度为6.8W?cm-2, 温度在100~550 ℃的实验数据对比
Fig. 8 Metastable Ti1-xAlxN phase formation diagrams (a) The predicted diagrams at different power densities; (b) The predicted diagram compared with the experimental data with power density of 2.3 W?cm-2 at 100-550 ℃; (c) The predicted diagram compared with the experimental data with power density of 4.6 W?cm-2 at 100-550 ℃; (d) The predicted diagram compared with the experimental data with power density of 6.8 W?cm-2 at 100-550 ℃
[1] |
ENDRINO J C, ÅRHAMMAR C, GUTIÉRREZ C , et al. Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing. Acta Materialia, 2011,59(2):6287-6296.
DOI URL |
[2] |
RACHBAUER R, GENGLER J J, VOEVODIN A A , et al. Temperature driven evolution of thermal, electrical, and optical properties of Ti-Al-N coatings. Acta Materialia, 2012,60:2091-2096.
DOI URL PMID |
[3] |
MAYRHOFER P, RACHBAUER R, HOLEC D , et al. Protective transition metal nitride coatings. Comprehensive Materials Processing, 2014,4:355-387.
DOI URL PMID |
[4] |
NORRBY N, ROGSTRÖM L JOHANSSON-JÕESAAR M P , et al. In situ X-ray scattering study of the cubic to hexagonal transformation of AlN in Ti1-xAlxN. Acta Materialia, 2014,73:205-214.
DOI URL |
[5] |
SCHRAMM I C, JÖESAAR M P J, JENSEN J , et al. Impact of nitrogen vacancies on the high temperature behavior of (Ti1-xAlx)Ny alloys. Acta Materialia, 2016,119:218-228.
DOI URL |
[6] |
ZOU H K, CHEN L, CHANG K K , et al. Enhanced hardness and age-hardening of TiAlN coatings through Ru addition. Scripta Materialia, 2019,162:382-386.
DOI URL |
[7] |
RAJAN S T, KARTHIKA M, BENDAVID A , et al. Apatite layer growth on glassy Zr48Cu36Al8Ag8 sputtered titanium for potential biomedical applications. Applied Surface Science, 2016,369:501-509.
DOI URL |
[8] |
CAI C N, ZHANG C, SUN Y S , et al. ZrCuFeAlAg thin film metallic glass for potential dental applications. Intermetallics, 2017,86:80-87.
DOI URL |
[9] |
LEE C M, CHU J P, CHANG W Z , et al. Fatigue property improvements of Ti-6Al-4V by thin film coatings of metallic glass and TiN: a comparison study. Thin Solid Films, 2014,561:33-37.
DOI URL |
[10] |
TSAI P H, LIN Y Z, LI J B , et al. Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating. Intermetallics, 2012,31:127-131.
DOI URL |
[11] |
TSAI P H, LI T H, HSU K T , et al. Effect of coating thickness on the cutting sharpness and durability of Zr-based metallic glass thin film coated surgical blades. Thin Solid Films, 2016,618:36-41.
DOI URL |
[12] |
CHU J P, JANG J S C, HUANG J C , et al. Thin film metallic glasses: unique properties and potential applications. Thin Solid Films, 2012,520:5097-5122.
DOI URL |
[13] | GORDON R G . Criteria for choosing transparent conductors. MRS Bulletin, 2000,25:52-57. |
[14] |
CHENG C H, TING J M . Transparent conducting GZO, Pt/GZO, and GZO/Pt/GZO thin films. Thin Solid Films, 2007,516:203-207.
DOI URL PMID |
[15] |
KIM D . Improved electrical and optical properties of GZO films with a thin TiO2 buffer layer deposited by RF magnetron sputtering. Ceramics International, 2014,40:1457-1460.
DOI URL |
[16] |
WANG H L, SUN Y H, FANG L , et al. Growth and characterization of high transmittance GZO films prepared by Sol-Gel method. Thin Solid Films, 2016,615:19-24.
DOI URL |
[17] |
LU L F, SHEN H L, FENG J , et al. The enhanced conductivity of AZO thin films on soda lime glass with an ultrathin Al2O3 buffer layer. Physica B, 2010,405:3320-3323.
DOI URL |
[18] |
SHEN H L, ZHANG H, LU L F , et al. Preparation and properties of AZO thin films on different substrates. Progress in Natural Science: Materials International, 2010,20:44-48.
DOI URL |
[19] | SUBRAMANYAM T K, GOUTHAM P, PAVAN KUMAR S , et al. Optimization of sputtered AZO thin films for device application. Materials Today: Proceedings, 2018,5:10851-10859. |
[20] | LÜ K, ZHU B L, LI K , et al. Effect of hydrogen and Cu interlayer on the optical and electrical properties of GZO thin film. Journal of Inorganic Materials, 2014,29(5):494-497. |
[21] | CHEN D, LÜ J G, HUANG J Y , et al. Performances of GaN-based LEDs with AZO films as transparent electrodes. Journal of Inorganic Materials, 2013,28(6):650-652. |
[22] | QIN X J, HAN S H Z, ZHAO L , et al. Fabrication of transparent conductive Al-doped ZnO thin films by aerosol-assisted chemical vapour deposition. Journal of Inorganic Materials, 2011,26(6):608-611. |
[23] |
AYDOGAN E, WEAVER J S, MALOY S A , et al. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations. Journal of Nuclear Materials, 2018,503:250-262.
DOI URL |
[24] |
DRYEPONDT S, UNOCIC K A, HOELZER D T , et al. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding. Journal of Nuclear Materials, 2018,501:59-71.
DOI URL |
[25] |
GUSSEV M N, CAKMAK E, FIELD K G , et al. Impact of neutron irradiation on mechanical performance of FeCrAl alloy laser-beam weldments. Journal of Nuclear Materials, 2018,504:221-233.
DOI URL |
[26] |
HOGGAN R E, HE L F, HARP J M , et al. Interdiffusion behavior of U3Si2 with FeCrAl via diffusion couple studies. Journal of Nuclear Materials, 2018,502:356-369.
DOI URL |
[27] |
JIN D L, NI N, GUO Y , et al. Corrosion of the bonding at FeCrAl/ Zr alloy interfaces in steam. Journal of Nuclear Materials, 2018,508:411-422.
DOI URL |
[28] |
PARK D, MOUCHE P A, ZHONG W C , et al. TEM/STEM study of zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure. Journal of Nuclear Materials, 2018,502:95-105.
DOI URL |
[29] |
TANG C C, JIANU A, STEINBRUECK M , et al. Influence of composition and heating schedules on compatibility of FeCrAl alloys with high-temperature steam. Journal of Nuclear Materials, 2018,511:496-507.
DOI URL |
[30] |
CHANG K K, MENG F P, GE F F , et al. Theory-guided bottom- up design of the FeCrAl alloys as accident tolerant fuel cladding materials. Journal of Nuclear Materials, 2019,516:63-72.
DOI URL |
[31] |
CAIRNEY J M, HARRIS S G, MUNROE P R , et al. Transmission electron microscopy of TiN and TiAlN thin films using specimens prepared by focused ion beam milling. Surface and Coatings Technology, 2004,183:239-246.
DOI URL |
[32] |
RACHBAUER R, STERGAR E, MASSL S , et al. Three-dimensional atom probe investigations of Ti-Al-N thin films. Scripta Materialia, 2009,61:725-728.
DOI URL |
[33] | WEBER F R, FONTAINE F, SCHEIB M, , et al. Cathodic arc evaporation of (Ti, Al) N coatings and (Ti, Al) N/TiN multilayer-coatings-correlation between lifetime of coated cutting tools, structural and mechanical film properties. Surface and Coatings Technology, 2004,177-178:227-232 |
[34] |
MÜNZ W D . A new alternative to TiN coatings. Journal of Vacuum Science and Technology A, 1986,4(6):2717-2725.
DOI URL PMID |
[35] |
WAHLSTRÖM U, HULTMAN L, SUNDGREN J E , et al. Crystal growth and microstructure of polycrystalline Ti1-xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering. Thin Solid Films, 1993,235:62-70.
DOI URL |
[36] |
ZHOU M, MAKINO Y, NOSE M , et al. Phase transition and properties of Ti-Al-N thin films prepared by rf-plasma assisted magnetron sputtering. Thin Solid Films, 1999,339:203-208.
DOI URL |
[37] |
HÖRLING A, HULTMAN L, ODÉN M , et al. Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools. Surface and Coatings Technology, 2005,191:384-392.
DOI URL PMID |
[38] |
KUTSCHEJ K, MAYRHOFER P, KATHREIN M , et al. Structure, mechanical and tribological properties of sputtered Ti1-xAlxN coatings with 0.5≤x≤0.75. Surface and Coatings Technology, 2005,200:2358-2365.
DOI URL |
[39] |
RAFAJA D, POKLAD A, SCHREIBER G , et al. On the preferred orientation in Ti1-xAlxN and Ti1-x-yAlxSiyN thin films. Zeitschrift für Metallkunde, 2005,96:738-742.
DOI URL PMID |
[40] |
GRECZYNSKI G, LU J, JOHANSSON M , et al. Role of Tin + and Aln + ion irradiation(n=1, 2) during Ti1-xAlxN alloy film growth in a hybrid HIPIMS/magnetron mode. Surface and Coatings Technology, 2012,206:4202-4211.
DOI URL |
[41] |
GROSSMANN B, SCHALK N, CZETTL C , et al. Phase composition and thermal stability of arc evaporated Ti1-xAlxN hard coatings with 0.4≤x≤0.67. Surface and Coatings Technology, 2017,309:687-693.
DOI URL |
[42] |
HANS M, MUSIC D, CHEN Y T , et al. Crystallite size-dependent metastable phase formation of TiAlN coatings. Scientific Reports, 2017,7(16096):1-7.
DOI URL PMID |
[43] | SPENCER P, HOLLECK H . Application of a thermochemical data-bank system to the calculation of metastable phase formation during PVD od carbide, nitride and boride coatings. High Temperature Science, 1990,27:295-309. |
[44] |
STOLTEN H, SPENCER P, NEUSCHÜTZ D , et al. Estimation of formation enthalpies for transition metal mono nitrides, carbides and oxides. Journal de Chimie Physique, 1993,90:209-219.
DOI URL |
[45] |
CHEN Q, SUNDMAN B . Thermodynamic assessment of the Ti-Al-N system. Journal of Phase Equilibria, 1998,19(20):146-160.
DOI URL |
[46] | ZENG K J, SCHMID-FETAER R . Thermodynamic Modeling and Applications of the Ti-Al-N Phase Diagram. Thermodynamics of Alloy Formation, 1997, 275-293. |
[47] | SPENCER P . Thermodynamic prediction of metastable coating structures in PVD processes. Zeitschrift für Metallkunde, 2001,92:1145-1150. |
[48] |
HUGOSSON H W, HÖGBERG H, ALGREN M , et al. Theory of the effects of substitutions on the phase stabilities of Ti1-xAlxN. Journal of Applied Physics, 2003,93(8):4505-4511.
DOI URL |
[49] | MAYRHOFER P, MUSIC D, SCHNEIDER J , et al. Influence of the Al distribution on the structure, elastic properties, and phase stability of supersaturated Ti1-xAlxN. Journal of Applied Physics, 2006,100:1-5. |
[50] |
HOLEC D, ROVERE F, MAYRHOFER P H , et al. Pressure- dependent stability of cubic and wurtzite phases within the TiN-AlN and CrN-AlN systems. Scripta Materialia, 2010,62:349-352.
DOI URL |
[51] |
EUCHNER H, MAYRHOFER P . Vacancy-dependent stability of cubic and wurtzite Ti1-xAlxN. Surface and Coatings Technology, 2015,275:214-218.
DOI URL PMID |
[52] |
SHULUMBA N, HELLMAN O, RAZA Z , et al. Lattice vibrations change the solid solubility of an alloy at high temperatures. Physical Review Letters, 2016,117(11):1-6.
DOI URL PMID |
[53] |
SANGIOVANNI D, EDSTRÖM D, HULTMAN L , et al. Dynamics of Ti, N, and TiNx (x= 1-3) admolecule transport on TiN (001) surfaces. Physical Review B, 2012,8:1-10.
DOI URL |
[54] |
SANGIOVANNI D, EDSTRÖM D, HULTMAN L , et al. Ab initio.and classical molecular dynamics simulations of N2 desorption from TiN (001) surfaces. Surface Science, 2014,624:25-31.
DOI URL |
[55] | SANGIOVANNI D, ALLING B, STENETEG P , et al. Self- interstitial diffusion, and Frenkel-pair formation/dissociation in B1 TiN studied by ab initio and classical molecular dynamics with optimized potentials. Physical Review B, 2015,91:1-17. |
[56] | ALLING B, STENETEG P, THOLANDER C , et al. Configurational disorder effects on adatom mobilities on Ti1-xAlxN (001) surfaces from first principles. Physical Review B, 2012,85(24):1-5. |
[57] |
CHANG K K, TO BABEN M, MUSIC D , et al. Estimation of the activation energy for surface diffusion during metastable phase formation. Acta Materialia, 2015,98:135-140.
DOI URL |
[58] |
CHANG K K, MUSIC D, TO BABEN M , et al. Modeling of metastable phase formation diagrams for sputtered thin films. Science and Technology of Advanced Materials, 2016,17:210-219.
DOI URL PMID |
[59] | CANTOR B, CAHN R . Metastable alloy phases by co-sputtering. Acta Materialia, 1976,24:845-852. |
[60] |
SAUNDERS N, MIODOWNIK A P . Phase formation in co-deposited metallic alloy thin flms. Journal of Materials Science, 1987,22:629-637.
DOI URL PMID |
[61] |
LIU S D, CHANG K K, MRÁZ S , et al. Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films. Acta Materialia, 2019,165:615-625.
DOI URL PMID |
[62] |
KIM K H, LEE S H . Comparative studies of TiN and Ti1-xAlxN by plasma-assisted chemical vapor deposition using a TiCl4/AlCl3/N2/ H2/Ar gas mixture. Thin Solid Films, 1996,283:165-170.
DOI URL |
[63] |
LEE S H, KIM B J, KIM H H , et al. Structural analysis of AlN and (Ti1-xAlx) N coatings made by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 1996,80(3):1469-1473.
DOI URL |
[64] | PRANGE R, CREMER R, NEUSCHÜTZ D , et al. Plasma- enhanced CVD of Plasma- enhanced CVD of (Ti,Al) N films from chloridic precursors in a DC glow discharge. Surface and Coatings Technology 2000, 133-134:208-214. |
[65] |
ENDLER I, HÖHN M, HERRMANN M , et al. Novel aluminum- rich Ti1-xAlxN coatings by LPCVD. Surface and Coatings Technology, 2008,203:530-533.
DOI URL PMID |
[66] |
TODT T, ZALESAK J, DANIEL R , et al. Al-rich cubic Al0. 8Ti0. 2N coating with self-organized nano-lamellar microstructure: thermal and mechanical properties. Surface and Coatings Technology, 2016,291:89-93.
DOI URL |
[67] | GROVENOR C R M, HENTZELL H T G, SMITH D A , et al. The development of grain structure during growth of metallic films. Acta Materialia The development of grain structure during growth of metallic films. Acta Materialia, 1984,32(5):(5):773-781. |
[68] |
PETROV I, BARNA P B, HULTMAN L , et al. Microstructural evolution during film growth. Journal of Vacuum Science & Technology A, 2003,21(5):S117-S128.
DOI URL PMID |
[69] | EINSTEIN A . Elementare teorie der brownschen bewegung. Z Elektrochem, 1908,14:371-381. |
[70] |
SUNDMAN B, OHNUMA I, DUPIN N , et al. An assessment of the entire Al-Fe system including D03 ordering. Acta Materialia, 2009,57:2896-2908.
DOI URL |
[71] |
LIANG S M, SCHMID-FETZER R . Thermodynamic assessment of the Al-Cu-Zn system, part II: Al-Cu binary system. CALPHAD, 2015,51:252-260.
DOI URL |
[72] |
ZHOU C Y, CUI J X, GUO C P , et al. Thermodynamic description of the Al-Ge-Ni system over the whole composition and temperature ranges. CALPHAD, 2017,58:138-150.
DOI URL |
[73] |
LI M, DU Z M, GUO C , et al. Thermodynamic optimization of the Cu-Sn and Cu-Nb-Sn systems. Journal of Alloys and Compounds, 2009,477:104-117.
DOI URL |
[74] |
SUBRAMANINA P R, LAUGHLIN D E . Cu-W (copper tungsten). Indian Institute of Metals, 1991,12:76-79.
DOI URL PMID |
[75] |
ZHAO J R, DU Y, ZHANG L J , et al. Thermodynamic reassessment of the Cu-V system supported by key experiments. CALPHAD, 2008,32:252-255.
DOI URL |
[76] |
WEILAND R, LUPTON D F, FISCHER B , et al. High-temperature mechanical properties of the platinum group metals. Platinum Metals Review, 2006,50(4):158-170.
DOI URL PMID |
[77] |
GANSKE G, SLAVCHEVA E, VAN OOYEN A , et al. Sputtered platinum-iridium layers as electrode material for functional electrostimulation. Thin Solid Films, 2011,519:3965-3970.
DOI URL |
[78] |
TSENG S F, LEE C T, Huang K C , et al. Mechanical properties of Pt-Ir and Ni-Ir binary alloys for glass-molding dies coating. Journal of Nanoscience and Nanotechnology, 2011,11(10):8682-8688.
DOI URL |
[79] |
YI A Y, JAIN A . Compression molding of aspherical glass lenses-a combined experimental and numerical analysis. Journal of the American Ceramic Society, 2005,88(3):579-586.
DOI URL |
[80] | KLOCKE F, DAMBON O, YI A Y , et al. Process Chain for the Replication of Complex Optical Glass Components. Berlin Heidelberg: Springer, 2013: 119-132. |
[81] | MA K J, CHIEN H H, CHUAN W H , et al. Design of protective coatings for glass lens molding. Key Engineering Materials Design of protective coatings for glass lens molding. Key Engineering Materials, 2008,364-366:655-661. |
[82] |
KLOCKE F, DAMBON O, GEORGIADIS K , et al. Comparison of nitride and noble metal coatings for precision glass molding tools. Key Engineering Materials, 2010,438:9-6.
DOI URL |
[83] |
BOBZIN K, BAGCIVAN N, EWERING M , et al. Influence of interlayer thickness of a thin noble metal MSIP-PVD coating on compound and system properties for glass lens moulding. Production Engineering, 2012,6:311-318.
DOI URL |
[84] | BOBZIN K, BAGCIVAN N, BRÖGELMANN T , et al. Development and qualification of a MSIP PVD iridium coating for precision glass moulding. Materials Sciences and Application, 2013,44(8):673-678. |
[85] |
SAKSENA A, CHIEN Y C, CHANG K K , et al. Metastable phase formation of Pt-X (X= Ir, Au) thin flms. Scientific Reports, 2018,8(1):10198.
DOI URL PMID |
[86] |
YAMABE-MITARAI Y, AOYAGI T, ABE T , et al. An investigation of phase separation in the Ir-Pt binary system. Journal of Alloys and Compounds, 2009,484:327-334.
DOI URL |
[87] |
XU X N, REN Y P, LI C F , et al. Thermodynamic assessment of Au-Pt system. Transactions of Nonferrous Metals Society of China, 2012,22:1432-1436.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 全文心, 余艺平, 方冰, 李伟, 王松. 管状C/SiC复合材料高温空气氧化行为与宏细观建模研究[J]. 无机材料学报, 2024, 39(8): 920-928. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[7] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[8] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[9] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[10] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[11] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[12] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[13] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[14] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[15] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||