无机材料学报 ›› 2019, Vol. 34 ›› Issue (3): 247-259.DOI: 10.15541/jim20180335
所属专题: 热电材料与器件
骆军1,2, 何世洋1, 李志立1, 李永博1, 王风1, 张继业1
收稿日期:
2018-07-19
修回日期:
2018-10-12
出版日期:
2019-03-20
网络出版日期:
2019-02-26
作者简介:
骆 军(1976-),教授. E-mail: junluo@shu.edu.cn
基金资助:
LUO Jun1,2, HE Shi-Yang1, LI Zhi-Li1, LI Yong-Bo1, WANG Feng1, ZHANG Ji-Ye1
Received:
2018-07-19
Revised:
2018-10-12
Published:
2019-03-20
Online:
2019-02-26
Supported by:
摘要:
高通量材料实验旨在利用较少的实验次数快速获得成分-物相-结构-性能之间关系, 筛选出组分最优的材料体系, 目前已在超导材料、荧光材料以及巨磁阻材料等方面有较多应用。热电材料是可以实现热能和电能直接相互转换的功能材料, 在温差发电和废热利用等领域有着重要的应用价值, 但热电材料的传统实验制备与表征方法存在着实验周期长和效率低等问题。因此, 将高通量实验的方法和理念引入新型热电材料的研发和优化具有重要的理论和实际意义。本文主要总结和梳理了现有在热电材料实验研究中具有较好应用前景的高通量实验制备与表征技术, 包括高通量样品制备、成分-结构高通量表征、电-热输运性能高通量表征等, 并分析了各高通量实验技术在实验热电材料研究中的优势和局限性, 希望为今后热电材料高通量实验优化和筛选提供一定的参考。
中图分类号:
骆军, 何世洋, 李志立, 李永博, 王风, 张继业. 热电材料高通量实验制备与表征方法[J]. 无机材料学报, 2019, 34(3): 247-259.
LUO Jun, HE Shi-Yang, LI Zhi-Li, LI Yong-Bo, WANG Feng, ZHANG Ji-Ye. Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 247-259.
图5 n-型0.01/0.055% PbI2掺杂的(Pb0.95Sn0.05Te)0.92(PbS)0.08功能梯度材料塞贝克系数分布[24]
Fig.5 Variation of Seebeck coefficient values along n-type 0.01/0.055% PbI2 doped (Pb0.95Sn0.05Te)0.92(PbS)0.08 functionally graded materials[24]
图6 (a)高温超速离心机示意图和(b)离心过程原子再分布原理示意图[25]
Fig.6 (a) Scheme of a rotor with capsules for sedimentation experiment and (b) mechanism of sedimentation of atoms in the strong acceleration field[25]
图7 (a)退火后的Ti-Ni-Sn薄膜材料库照片和(b~d)以颜色编码的材料库高通量成分EDX表征结果[27]
Fig.7 (a) Optical image of the annealed Ti-Ni-Sn thin film materials library; (b-d) color-coded results of the high-throughput EDX measurements of the material library[27]
图8 EDX表征的Mg\Ni\Al元素分布图[30]
Fig.8 EDX measurements of the concentration of (a)magnesium, (b)nickel and (c)aluminum of an Mg-Ni-Al ternary thin film library[30]
图10 (a)Cu/Si元素比例、(b)玻璃态转化温度/℃和(c)玻璃化转变总焓[35]
Fig.10 Composition trends over the sample library, (a) Si:Cu ratio for the glass-forming component, (b) glass transition temperature and (c) the total enthalpy of this glass reaction[35]
图11 (a)泵浦和探测激光探测装置原理图以及(b)样品表面温度与时间关系[33]
Fig.11 (a) Schematic of the pump and probe laser measurement setup and (b)temperature increase as a function of time after a single-pulse[33]
图13 (a)Cr-Ti扩散节热导分布图和(b)热导率变化数值(图(a)中虚线)[40]
Fig.13 (a)Thermal conductivity imaging of a Cr-Ti diffusion couple and (b) numerical values for thermal conductivity across the path shown as a dashed line in (a)[40]
图15 (a)由不同导热率的样品引起的探针电阻的变化, (b)样品电阻分布图, (c) Yb0.7Co4Sb12中相应的热导率, (d)不同微区之间的界面上的电阻变化的实际线扫描与模拟值[45]
Fig. 15 Quantitative mapping of thermal conductivities, (a) changes in the probe resistance induced by samples with different thermal conductivities; Mappings of (b) resistance change and (c) corresponding thermal conductivities in Yb0.7Co4Sb12; (d) Line scan of resistance change across an interface between different phases[45]
图16 由SThM获得的相同区域的Ag2Se薄膜(a) SEM形貌, (b) AFM形貌图和(c)热成像图[46]
Fig.16 (a) SEM image, (b) AFM topography image, and (c) thermal map image obtained with the SThM technique are shown simultaneously for the same area of the Ag2Se thin film[46]
图19 (a)硅/金基底和(b)石英/金基底时不同厚度的Bi2Te3薄膜塞贝克系数映像[49]
Fig.19 Thermopower mappings with different thicknesses grown on Si/Au(a)and quartz/Au(b) substrates[49]
图21 AFM加热探针技术表征塞贝克系数的示意图[52]
Fig.21 Schematic diagram of the AFM conductive, heated probe technique for nanoscale Seebeck coefficient characterization[52]
图22 (a) Bi2Te3的AFM形貌图和(b)塞贝克系数的三维柱状图, 对应于a中的49个位置[52]
Fig.22 (a) AFM topography image of Bi2Te3 thin film with 49 locations for nanoscale and (b) Seebeck voltage measurement, as indication by 49 dots in (a)[52]
[1] | WIDENER ANDREA.Materials genome initiative. Chem. Eng. News, 2013, 91(31): 25-27. |
[2] | RACCUGLIA PAUL, ELBERT KATHERINE C, ADLER PHILIP D F, et al. Machine-learning-assisted materials discovery using failed experiments. Nature, 2016, 533(7601): 73-75. |
[3] | HOCHBAUM ALLON I, CHEN RENKUN,DELGADO RAUL DIAZ, et al.Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175): 163-165. |
[4] | YOU LI, LIU YE-FENG, LI XIN, et al.Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering. Energy Environ. Sci., 2018, 11(7): 1848-1858. |
[5] | ZHU TIE-JUN, LIU YIN-TU, FU CHEN-GUANG, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater., 2017, 29(14): 1605884-1-26. |
[6] | PAN YU, AYDEMIR UMUT, GROVOGUI JANN A, et al. Melt-centrifuged (Bi,Sb)2Te3: engineering microstructure toward high thermoelectric efficiency. Adv. Mater., 2018, 30(34): 1802016-1-7. |
[7] | YU CUI, ZHU TIE-JUN, XIAO KAI, et al.Microstructure of ZrNiSn-base half-Heusler thermoelectric materials prepared by melt-spinning. [J].Inorg. Mater., 2010, 25(6): 569-572. |
[8] | LIU YIN-TU, FU CHEN-GUANG, XIA KAI-YANG, et al. Lanthanide contraction as a design factor for high-performance half-Heusler thermoelectric materials. Adv. Mater., 2018, 30(32): 1800881-1-7. |
[9] | YAO ZHENG, QIU PENG-FEI, LI XIAO-YA, et al.Investigation on quick fabrication of n-type filled Skutterudites.[J].Inorg. Mater., 2016, 31(12): 1375-1382. |
[10] | ZHANG JIA-WEI, LIU RUI-HENG, CHENG NIAN, et al.High- performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv. Mater., 2014, 26(23): 3848-3853 |
[11] | BHATT RANU, BHATTACHARYA SHOVIT, BASU RANITA, et al.Enhanced thermoelectric properties of selenium-deficient layered TiSe2-x: a charge-density-wave material. ACS Appl. Mater. Interfaces,2014,6(21): 18619-18625. |
[12] | ZHAO LI-DONG, DRAVID VINAYAK P, KANATZIDIS MERCOURI G.The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci., 2014, 7(1): 251-268. |
[13] | PEI YAN-ZHONG, HEINZ NICHOLAS A, AARON LALONDE, et al.Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy Environ. Sci., 2011, 4(9): 3640-3645. |
[14] | YAN Y G, MARTIN J, WONG-NG W, et al. A temperature dependent screening tool for high throughput thermoelectric characterization of combinatorial films. Rev. Sci. Instrum., 2013, 84(11): 115110-1-7. |
[15] | XIANG XIAO-DONG, SUN XIAO-DONG, BRICEÑO GABRIEL, et al. A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738-1740. |
[16] | FUJIMOTO K, KATO T, ITO S, et al.Development and application of combinatorial electrostatic atomization system “M-ist Combi”: high-throughput preparation of electrode materials. Solid State Ionics, 2006, 177(26-32): 2639-2642. |
[17] | FUJIMOTO KENJIRO, TAGUCHI TORU, SHOGO YOSHIDA, et al.Design of Seebeck coefficient measurement probe for powder library. ACS Comb. Sci., 2014, 16(2): 66-70 |
[18] | HEDEGAARD ELLEN M J, JOHNSEN SIMON, BJERG LASSE, et al. Functionally graded Ge1-xSix thermoelectrics by simultaneous band gap and carrier density engineering. Chem. Mater., 2014, 26(17): 4992-4997. |
[19] | KASAP SAFA, CAPPER PETER.Springer Handbook of Electronic and Photonic Materials. New York: Springer Science Business Media, Inc., 2006: 236. |
[20] | HEDEGAARD ELLEN M J, MAMAKHEL AREF A H, REARDON HAZEL, et al. Functionally graded (PbTe)1-x(SnTe)x thermoelectrics. Chem. Mater., 2018, 30(1): 280-287. |
[21] | KOHRI H, NISHIDA I A, SHIOTA I. Improvement of thermoelectric properties for n-type PbTe by adding Ge. Mater. Sci. Forum, 2003, 423-425: 381-384. |
[22] | ZHAO JI CHENG, JACKSON MELVIN R, PELUSO LOUIS A, et al.A diffusion multiple approach for the accelerated design of structural materials. MRS Bull., 2002, 27(4): 324-329. |
[23] | GELBSTEIN Y, DASHEVSKY Z, DARIEL M P.Powder metallurgical processing of functionally graded p-Pb1-xSnxTe materials for thermoelectric applications. Phys. B, 2007, 391(2): 256-265. |
[24] | HAZAN EDEN, OHAD BEN-YEHUDA, MADAR NAOR, et al. Functional graded germanium-lead chalcogenide-based thermoelectric module for renewable energy applications. Adv. Energy Mater., 2015, 5(11): 1500272-1-8. |
[25] | JANUSZKO KAMILA, STABRAWA ARTUR, OGATA YUDAI, et al.Influence of sedimentation of atoms on structural and thermoelectric properties of Bi-Sb alloys. [J]. Electron. Mater., 2016, 45(3): 1947-1955. |
[26] | ZIOLKOWSKI PAWEL, WAMBACH MATTHIAS, LUDWIG ALFRED, et al.Application of high-throughput Seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Comb. Sci., 2018, 20(1): 1-18. |
[27] | WAMBACH MATTHIAS, STERN ROBIN, BHATTACHARYA SANDIP, et al. Unraveling self-doping effects in thermoelectric TiNiSn half-Heusler compounds by combined theory and high-throughput experiments. Adv. Electron. Mater., 2016, 2(3): 1500208- 1-9. |
[28] | XIANG XIAO-DONG.High throughput synthesis and screening for functional materials. Appl. Surf. Sci., 2004, 223(1/3): 54-61. |
[29] | ZHAO JI-CHENG, ZHENG XUAN, CAHILLBDAVID G.Thermal conductivity mapping of the Ni-Al system and the beta-NiAl phase in the Ni-Al-Cr system. Scripta Mater., 2012, 66(11): 935-938. |
[30] | MAO SAMUELS.High throughput growth and characterization of thin film materials. J. Cryst. Growth, 2013, 379: 123-130. |
[31] | PERNOT GILLES, MICHEL HÉLÈNE, VERMEERSCH BJORN, et al. Frequency-dependent thermal conductivity in time domain thermoreflectance analysis of thin films. Mater. Res. Soc. Symp. Proc., 2011, 1347: DOI: 10.1557/opl.2011.1277. |
[32] | PADDOCK CAROLYN A, EESLEY GARY L.Transient thermoreflectance from thin metal films. [J]. Appl. Phys., 1986,60(1): 285-290. |
[33] | ABADA B, BORCA-TASCIUC D A, MARTIN-GONZALEZA M S. Non-contact methods for thermal properties measurement. Renew. Sust. Energ. Rev., 2017, 76: 1348-1370. |
[34] | MCCLUSKEY PATRICK J, VLASSAK JOOST J.Combinatorial nanocalorimetry. [J]. Mater. Res., 2010, 25(11): 2086-2100. |
[35] | GREGOIREJOHN M, MCCLUSKEYPATRICK J, DALEDARREN, et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses. Scripta Mater., 2012, 66(3/4): 178-181. |
[36] | TRITT TERRY M.Thermal Conductivity: Theory, Properties, and Applications. New York: Kluwer Academic/Plenum Publishers, 2004: 225-231. |
[37] | EESLEY G L.Observation of nonequilibrium electron heating in copper. Phys. Rev. Lett., 1983, 51(23): 2140-2143. |
[38] | FAVALORO T, BAHK J H, SHAKOURI A. Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. Rev. Sci. Instrum., 2015, 86(2): 024903- 1-9. |
[39] | MANZANO CRISTINA V, ABAD BEGOÑA, MUÑOZ MIGUEL ROJO, et al. Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited Bi2Te3 films. Sci. Rep., 2016, 6: 19129-1-8. |
[40] | HUXTABLE SCOTT, CAHILL DAVID G, FAUCONNIER VINCENT, et al.Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater., 2004, 3(5): 298-301. |
[41] | NISHI TSUYOSHI, YAMAMOTO SUGURU, MORI OKAWA, et al.Thermal microscope measurement of thermal effusivity distribution in compositionally graded PbTe-Sb2Te3-Ag2Te alloy system. Thermochim. Acta, 2018, 659: 39-43. |
[42] | WIELGOSZEWSKI GRZEGORZ, GOTSZALKA TEODOR.Scanning thermal microscopy (SThM): how to map temperature and thermal properties at the nanoscale. Adv. Imag. Electron Phys., 2015, 190: 177-221 |
[43] | GRAUBY STÉPHANE, PUYOO ETIENNE, RAMPNOUX JEAN-MICHEL, et al.Si and SiGe nanowires: fabrication process and thermal conductivity measurement by 3ω-scanning thermal microscopy. J. Phys. Chem. C, 2013, 117(17): 9025-9034. |
[44] | KING WILLIAM P, KENNY THOMAS W.Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation. J. Microelectromech. S., 2002, 11(6): 765-774. |
[45] | ESFAHANI EHSAN NASR, MA FEI-YUE, WANG SHAN-YU,et al.Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy. Natl. Sci. Rev., 2018, 5(1): 59-69. |
[46] | ANDRES PEREZ-TABORDA J, CABALLERO-CALERO O, VERA-LONDONO L, et al. High thermoelectric zT in n-type silver selenide films at room temperature. Adv. Energy Mater., 2018, 8(8): 1870033-1-8. |
[47] | MARHOUN FERHAT, JIRO NAGAO.Thermoelectric and transport properties of β-Ag2Se compounds. [J]. Appl. Phys., 2000, 88(2): 813-816. |
[48] | WU K H, HUNG C I, ZIOLKOWSKI P, et al. Improvement of spatial resolution for local Seebeck coefficient measurements by deconvolution algorithm. Rev. Sci. Instrum., 2009, 80(10): 105104-1-8. |
[49] | ZHOU AI-JUN, WANG WEI-HANG, YAO XU, et al.Impact of the film thickness and substrate on the thermopower measurement of thermoelectric films by the potential-Seebeck microprobe (PSM). Appl. Therm. Eng., 2016, 107: 552-559. |
[50] | MI JIAN-LI, BREMHOLM MARTIN, BIANCHI MARCO, et al.Phase separation and bulk p-n transition in single crystals of Bi2Te2Se topological insulator. Adv. Mater., 2013, 25(6): 889-893. |
[51] | DE BOOR J, STIEWEP C,ZIOLKOWSKI P, et al.High-temperature measurement of Seebeck coefficient and electrical conductivity. [J]. Electron. Mater., 2013, 42(7): 1711-1718. |
[52] | XU K Q, ZENG H R, YU H Z, et al.Ultrahigh resolution characterizing nanoscale Seebeck coefficient via the heated, conductive AFM probe. Appl. Phys. A, 2015, 118(1): 57-61. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[8] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[9] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[10] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[11] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[12] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[13] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[14] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||