[1] |
SONG K, JUNG J, HEO Y U,et al. α-MnO2 nanowire catalysts with ultra-high capacity and extremely low overpotential in Li-air batteries through tailored surface arrangement. Phys. Chem. Chem. Phys., 2013, 15(46): 20075-20079.
|
[2] |
ZAHOOR A, JANG H S, JEONG J S,et al. A comparative study of nanostructured α and δ-MnO2 for Li oxygen battery application. RSC Adv., 2014, 4(18): 8973-8977.
|
[3] |
ZHANG J, LUAN Y, LYU Z,et al. Synthesis of hierarchical porous delta-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries. Nanoscale, 2015, 7(36): 14881-14888.
|
[4] |
KIM D S, KIM S B.Electrochemical performance of surface modified CNF/Co3O4 composite for Li-air batteries.J. Electroceram., 2014, 33(3/4): 246-251.
|
[5] |
THAPA A K, PANDIT B, PAUDEL H S,et al. Polythiophene mesoporous birnessite-MnO2/Pd cathode air electrode for rechargeable Li-air battery. Electrochim. Acta, 2014, 127: 410-415.
|
[6] |
QIN Y, LU J, DU P,et al. In-situ fabrication of porous- carbon-supported α-MnO2 nanorods at room temperature: application for rechargeable Li-O2 batteries. Energ. Environ. Sci., 2013, 6(2): 519-531.
|
[7] |
YU Y, ZHANG B, HE Y B,et al. Mechanisms of capacity degradation in reduced graphene oxide/α-MnO2 nanorod composite cathodes of Li-air batteries. J. Mater. Chem. A, 2013, 1(4): 1163-1170.
|
[8] |
LIU J, YOUNESI R, GUSTAFSSON T,et al. Pt/α-MnO2 nanotube: a highly active electrocatalyst for Li-O2 battery. Nano Energy, 2014, 10: 19-27.
|
[9] |
CAO Y L, LV F C, YU S C,et al. Simple template fabrication of porous MnCo2O4 hollow nanocages as high-performance cathode catalysts for rechargeable Li-O2 batteries. Nanotechnology, 2016, 27(13): 1-10.
|
[10] |
WEI W, WANG D W, YANG Q H.Carbon-based material for a Li-air battery.Carbon, 2015, 81: 850-852.
|
[11] |
LIU L, GUO H, HOU Y,et al. 3D hierarchical porous Co3O4 nanotube network as efficient cathode for rechargeable lithium- oxygen batteries. Journal of Materials Chemistry A, 2017, 5(28): 14673-14681.
|
[12] |
LIU L, WANG J, HOU Y,et al. Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries. Small, 2016, 12(5): 602-611.
|
[13] |
CHOI H A, JANG H, WANG H H,et al. Synthesis and characterization of different MnO2 morphologies for Li-air batteries. Electron. Mater. Lett., 2014, 10(5): 957-962.
|
[14] |
WEI W, CUI X, CHEN W,et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev., 2011, 40(3): 1697-1721.
|
[15] |
CHU J, LU D Y, MA J,et al. Controlled growth of MnO2 via a facile one-step hydrothermal method and their application in supercapacitors. Materials Letters, 2017, 193: 263-265.
|
[16] |
CHEN J B, WANG Y W, HE X M,et al. Electrochemical properties of MnO2 nanorods as anode materials for lithium ion batteries. Electrochimica Acta, 2014, 142: 152-156.
|
[17] |
LIU H D, HU Z L, RUAN H B,et al. Nanostructured MnO2 anode materials for advanced lithium ion batteries. J. Mater. Sci. , 2016, 27: 11541-11547.
|
[18] |
LI B, CHAI J W, GE X M,et al. Sheet-on-sheet hierarchical nanostructured C@MnO2 for Zn-Air and Zn-MnO2 batteries. Chemnanomat., 2017, 3(6): 401-405.
|
[19] |
QIU W D, LI Y, YOU A,et al. High-performance flexible quasi-solid-state Zn-MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth. J. Mater. Chem. A, 2017, 5(28): 14838-14846.
|
[20] |
DEBART A, PATERSON A J, BAO J,et al. Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed., 2008, 47(24): 4521-4524.
|
[21] |
HU X, HAN X, HU Y,et al. Epsilon-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li-O2 batteries. Nanoscale, 2014, 6(7): 3522-3525.
|
[22] |
HASHEM A M, ABDEL-GHANY A E, EL-TAWIL R, et al. Urchin- like α-MnO2 formed by nanoneedles for high-performance lithium batteries. Ionics, 2016, 22(12): 2263-2271.
|
[23] |
HASHEMZADEH F, MEHDI KASHANI MOTLAGH M. A comparative study of hydrothermal and Sol-Gel methods in the synthesis of MnO2 nanostructures.J. Sol-Gel Sci. Techn., 2009, 51(2): 169-174.
|
[24] |
ZUO L, JIANG L P, ABDEL-HALIM E S, et al. Sonochemical preparation of stable porous MnO2 and its application as an efficient electrocatalyst for oxygen reduction reaction. Ultrason. Sonochem., 2017, 35(Part A): 219-225.
|
[25] |
TRAN M V, HA A T, LE P M L. Nanoflake manganese oxide and nickel-manganese oxide synthesized by electrodeposition for electrochemical capacitor. J. Nanomater., 2015, 2015: 309273-1-12.
|
[26] |
ZAHOOR A, CHRISTY M, JEON J S,et al. Improved lithium oxygen battery performance by addition of palladium nanoparticles on manganese oxide nanorod catalysts. J. Solid State Electr., 2015, 19(5): 1501-1509.
|
[27] |
ZHANG L, WANG Z, XU D,et al. α-MnO2 hollow clews for rechargeable Li-air batteries with improved cyclability. Chinese Sci. Bull., 2012, 57(32): 4210-4214.
|
[28] |
SU D, AHN H J, WANG G.Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries. J. Mater. Chem. A, 2013, 1(15): 4845-4850.
|
[29] |
MA Y, WANG R, WANG H,et al. Control of MnO2 nanocrystal shape from tremella to nanobelt for enhancement of the oxygen reduction reaction activity. J. Power Sources, 2015, 280: 526-532.
|