无机材料学报 ›› 2021, Vol. 36 ›› Issue (2): 203-209.DOI: 10.15541/jim20200161 CSTR: 32189.14.10.15541/jim20200161
所属专题: 能源材料论文精选(2021)
金高尧(), 何海传, 吴杰, 张梦源, 李亚娟(), 刘又年
收稿日期:
2020-03-27
修回日期:
2020-05-19
出版日期:
2021-02-20
网络出版日期:
2020-06-09
通讯作者:
李亚娟, 教授. E-mail:yajuanli@csu.edu.cn作者简介:
金高尧(1995–), 男, 硕士研究生. E-mail: jingaoyao@csu.edu.cn
JIN Gaoyao(), HE Haichuan, WU Jie, ZHANG Mengyuan, LI Yajuan(), LIU Younian
Received:
2020-03-27
Revised:
2020-05-19
Published:
2021-02-20
Online:
2020-06-09
About author:
JIN Gaoyao(1995–), male, Master candidate. E-mail: jingaoyao@csu.edu.cn
Supported by:
摘要:
锂硫电池被认为是新一代低成本、高能量密度的储能系统。但由于硫正极导电性差、穿梭效应严重以及氧化还原反应速率慢, 导致电池容量衰减严重, 倍率性能较差。本研究以柠檬酸钠为碳源制备了具有三维中空结构的多孔碳材料, 并在其骨架上负载钴纳米颗粒后作为硫正极的载体。引入的钴纳米颗粒可有效吸附多硫化物, 提升其转化反应的动力学, 进而明显改善电池的循环和倍率性能。所得的钴掺杂复合硫正极在0.5C (1C=1672 mAh·g-1)的倍率下首圈放电比容量高达1280 mAh·g-1, 在1C的倍率下稳定循环200圈后可保持770 mAh·g-1, 并且具有优异的倍率性能, 即使在10C的大电流密度下仍可稳定循环。
中图分类号:
金高尧, 何海传, 吴杰, 张梦源, 李亚娟, 刘又年. 锂硫电池正极用钴掺杂空心多孔碳载体材料[J]. 无机材料学报, 2021, 36(2): 203-209.
JIN Gaoyao, HE Haichuan, WU Jie, ZHANG Mengyuan, LI Yajuan, LIU Younian. Cobalt-doped Hollow Carbon Framework as Sulfur Host for the Cathode of Lithium Sulfur Battery[J]. Journal of Inorganic Materials, 2021, 36(2): 203-209.
Fig. 2 (a) XRD pattern, (b) Raman spectrum, (c) XPS spectrum and (d) N2 adsorption/desorption isotherm of Co/C-700 with insert in (d) showing pore size distribution
Sample | SBET/(m2∙g-1) | Vtotal/(cm3∙g-1) | Pore volume/% | ||
---|---|---|---|---|---|
Micro | Meso | Macro | |||
UWC-700 | 15.09 | 0.026 | 1.76 | 98.24 | 0 |
Co/C-700 | 376.13 | 0.52 | 28.85 | 62.76 | 8.49 |
HEC-700 | 369.53 | 0.54 | 25.47 | 68.17 | 6.36 |
Table S1 BET surface area and pore volume distribution of UWC-700, Co/C-700 and HEC-700
Sample | SBET/(m2∙g-1) | Vtotal/(cm3∙g-1) | Pore volume/% | ||
---|---|---|---|---|---|
Micro | Meso | Macro | |||
UWC-700 | 15.09 | 0.026 | 1.76 | 98.24 | 0 |
Co/C-700 | 376.13 | 0.52 | 28.85 | 62.76 | 8.49 |
HEC-700 | 369.53 | 0.54 | 25.47 | 68.17 | 6.36 |
Fig. S10 Multi-cycle CV curves of Co/C-700 based symmetric cells at 1 mV?s-1 (a) and increased rates (b), and multi-cycle CV curves of HEC-700 at 1 mV?s-1 (c) and increased rates (d)
Fig. 5 CV curves of (a) Co/C-700 and (b) HEC-700 based symmetric cells with and without 0.2 mol?L-1 Li2S6 at 1 mV?s-1; (c) CV curves and (d) EIS plots of S@Co/C-700 and S@HEC-700 electrodes
[1] | YE C, ZHANG L, GUO C X, et al. A 3D hybrid of chemically coupled nickel sulfide A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Advanced Functional Materials, 2017,27(33): 1702524-1-9. |
[2] |
YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angewandte Chemie International Edition, 2013,52(50):13186-13200.
URL PMID |
[3] | HU T C, PANG Y, WANG Y G, et al. S0.87Se0.13/CPAN composites as high capacity and stable cycling performance cathode for lithium sulfur battery. Electrochimica Acta, 2018,281:789-795. |
[4] | CHEN Z Y, ZHOU J J, GUO Y S, et al. A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery. Electrochimica Acta, 2018,282:555-562. |
[5] | LI C B, YUE H Y, WANG Q X, et al. A novel modified PP separator by grafting PAN for high-performance lithium-sulfur batteries. Journal of Materials Science, 2019,54(2):1566-1579. |
[6] | HUANG S Z, ZHANG L L, WANG J Y, et al. carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li-S batteries. Nano Research, 2018,11(3):1731-1743. |
[7] | CHABU J M, ZENG K, CHEN W S, et al. A novel graphene oxide-wrapped sulfur composites cathode with ultra-high sulfur content for lithium-sulfur battery. Applied Surface Science, 2019,493:533-540. |
[8] |
JIN S, XIN S, WANG L J, et al. Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-S batteries. Advanced Materials, 2016,28(41):9094-9102.
URL PMID |
[9] | ZHANG S S. Heteroatom-doped carbons: synthesis, chemistry and application in lithium/sulphur batteries. Inorganic Chemistry Frontiers, 2015,2(12):1059-1069. |
[10] | YANG S T, YAN C, CAO Z X, et al. Preparation of hierarchical porous carbon/sulfur composite based on lotus-leaves and its property for Li-S batteries. Journal of Inorganic Materials, 2016,31(2):135. |
[11] | PANG Q, KUNDU D, CUISINIER M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Communications, 2014,5: 4759-1-8. |
[12] |
ZHANG H, ZOU M C, ZHAO W Q, et al. Highly dispersed catalytic Co3S4 among a hierarchical carbon nanostructure for high-rate and long-life lithium-sulfur batteries. ACS Nano, 2019,13(4):3982-3991.
URL PMID |
[13] | LIN H B, YANG L Q, JIANG X, et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy & Environmental Science, 2017,10(6):1476-1486. |
[14] | LI S P, CHEN X, HU F, et al. Cobalt-embedded carbon nanofiber as electrocatalyst for polysulfide redox reaction in lithium sulfur batteries. Electrochimica Acta, 2019,304:11-19. |
[15] |
LIU Z Z, ZHOU L, GE Q, et al. Atomic iron catalysis of polysulfide conversion in lithium-sulfur batteries. ACS Applied Materials & Interfaces, 2018,10(23):19311-19317.
URL PMID |
[16] | AL SALEM H, BABU G, RAO C V, et al. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. Journal of the American Chemical Society, 2015,137(36):11542-11545. |
[17] |
LIM W G, KIM S, JO C S, et al. A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics. Angewandte Chemie International Edition, 2019,58(52):18746-18757.
URL PMID |
[18] | LUO S Q, ZHENG C M, SUN W W, et al. Controllable preparation of Co-NC nanoporous carbon derived from ZIF-67 for advanced lithium-sulfur batteries. Journal of Inorganic Materials, 2019,34(5):45-51. |
[19] | LI Y J, FAN J M, ZHENG M S, et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy & Environmental Science, 2016,9(6):1998-2004. |
[20] |
DU Z Z, CHEN X J, HU W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium- sulfur batteries. Journal of the American Chemical Society, 2019,141(9):3977-3985.
URL PMID |
[21] |
WU Q P, ZHOU X J, XU J, et al. Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li-S batteries. ACS Nano, 2019,13(8):9520-9532.
DOI URL PMID |
[22] |
YANG B J, CHEN J T, LEI S L, et al. Spontaneous growth of 3D framework carbon from sodium citrate for high energy- Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Advanced Energy Materials, 2018,8(10): 1702409-1-11.
DOI URL |
[23] |
ADDOUN A, DENTZER J, EHRBURGER P. Porosity of carbons obtained by chemical activation: effect of the nature of the alkaline carbonates. Carbon, 2002,40(7):1140-1143.
DOI URL |
[24] | SHI C C, YANG X L, ZHANG L L, et al. High-performance SiO/C/G composite anode for lithium ion batteries. Journal of Inorganic Materials, 2013,28(9):943-948. |
[25] | TANG F Y, WANG L Q, LIU Y N. Biomass-derived N-doped porous carbon: an efficient metal-free catalyst for methylation of amines with CO2. Green Chemistry, 2019,21(23):6252-6257. |
[26] |
MA L B, LIN H N, ZHANG W J, et al. Nitrogen-doped carbon nanotube forests planted on cobalt nanoflowers as polysulfide mediator for ultralow self-discharge and high areal-capacity lithium-sulfur batteries. Nano Letters, 2018,18(12):7949-7954.
DOI URL PMID |
[27] | LI Z Q, LI C X, GE X L, et al. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy, 2016,23:15-26. |
[28] | SU D W, CORTIE M, WANG G X. Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Advanced Energy Materials, 2017,7(8): 1602014-1-12. |
[29] | ZHANG Y Q, MA D K, ZHUANG Y, et al. One-pot synthesis of N-doped carbon dots with tunable luminescence properties. Journal of Materials Chemistry, 2012,22(33):16714-16718. |
[30] | TANG F Y, WANG L Q, DESSIE WALLE M, et al. An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural. Journal of Catalysis, 2020,383:172-180 |
[31] | FAN C Y, LIU S Y, LI H H, et al. Synergistic mediation of sulfur conversion in lithium-sulfur batteries by a Gerber tree-like interlayer with multiple components. Journal of Materials Chemistry A, 2017,5(22):11255-11262 |
[1] | 王新玲, 周娜, 田亚文, 周明冉, 韩静茹, 申远升, 胡执一, 李昱. SnS2/ZIF-8衍生二维多孔氮掺杂碳纳米片复合材料的锂硫电池性能研究[J]. 无机材料学报, 2023, 38(8): 938-946. |
[2] | 李婷婷, 张阳, 陈加航, 闵宇霖, 王久林. 锂硫电池S@pPAN正极用柔性黏结剂研究[J]. 无机材料学报, 2022, 37(2): 182-188. |
[3] | 李高然, 李红阳, 曾海波. 硼基材料在锂硫电池中的研究进展[J]. 无机材料学报, 2022, 37(2): 152-162. |
[4] | 汤嘉伟, 王永邦, 马成, 杨海潇, 王际童, 乔文明, 凌立成. 甲基萘沥青基有序中孔炭的制备及电化学性能[J]. 无机材料学报, 2021, 36(10): 1031-1038. |
[5] | 蒋浩,吴淏,侯成义,李耀刚,肖茹,张青红,王宏志. 切割方向对桦木衍生的取向微通道生物质炭锂硫电池隔膜性能的影响[J]. 无机材料学报, 2020, 35(6): 717-723. |
[6] | 王佳宁, 靳俊, 温兆银. α-MoC1-x纳米晶富集碳球修饰隔膜对锂硫电池性能的影响[J]. 无机材料学报, 2020, 35(5): 532-540. |
[7] | 李亚东, 李伟平, 王琴, 郑道光, 王建新. 碳纤维支撑柔性碳硫复合电极的制备、物性及电池性能研究[J]. 无机材料学报, 2019, 34(4): 373-378. |
[8] | 王宇晖, 靳 俊, 郭战胜, 温兆银. 锂硫电池循环过程中变形演化的直接观测[J]. 无机材料学报, 2017, 32(3): 247-251. |
[9] | 柴二亚, 潘俊安, 袁国龙, 程豪, 安峰, 谢淑红. 聚苯胺包覆蛋白石页岩/硫复合材料的制备及其电化学性能[J]. 无机材料学报, 2017, 32(11): 1165-1170. |
[10] | 杨书廷, 闫 崇, 曹朝霞, 史梦姣, 李艳蕾, 尹艳红. 以荷叶制备多级孔碳硫复合正极材料及性能研究[J]. 无机材料学报, 2016, 31(2): 135-140. |
[11] | 马国强, 温兆银, 王清松, 靳 俊, 吴相伟, 张敬超. CeO2纳米晶的添加对锂硫电池电化学性能的影响[J]. 无机材料学报, 2015, 30(9): 913-918. |
[12] | 陈飞彪, 王英男, 吴伯荣, 熊云奎, 廖维林, 吴 锋, 孙 喆. 锂硫电池石墨烯/硫复合正极材料的制备及其电化学性能[J]. 无机材料学报, 2014, 29(6): 627-632. |
[13] | 胡菁菁, 李国然, 高学平. 锂/硫电池的研究现状、问题及挑战[J]. 无机材料学报, 2013, 28(11): 1181-1186. |
[14] | 陈 龙, 刘景东, 张诗群. 负载ZnS的介孔炭复合硫正极材料的制备及性能研究[J]. 无机材料学报, 2013, 28(10): 1127-1131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||