无机材料学报 ›› 2018, Vol. 33 ›› Issue (11): 1237-1247.DOI: 10.15541/jim20180047 CSTR: 32189.14.10.15541/jim20180047
刘娇1, 王文清1,2, 吴鸿业1,2, 田野1, 曹凤泽1, 赵建军1,2
收稿日期:
2018-01-29
修回日期:
2018-05-23
出版日期:
2018-11-16
网络出版日期:
2018-10-20
作者简介:
刘娇(1995-), 女, 硕士研究生. E-mail: 907156479@qq.com
基金资助:
LIU Jiao1, WANG Wen-Qing1,2, WU Hong-Ye1,2, TIAN Ye1, CAO Feng-Ze1, ZHAO Jian-Jun1,2
Received:
2018-01-29
Revised:
2018-05-23
Published:
2018-11-16
Online:
2018-10-20
About author:
LIU Jiao. E-mail: 907156479@qq.com
Supported by:
摘要:
采用传统的高温固相反应法制备了La0.8Sr0.2Mn1-xCoxO3(x = 0, 0.1, 0.3)多晶样品。系统研究了Co掺杂量对La0.8Sr0.2MnO3(LSMO)多晶样品的类Griffiths相、磁熵变、临界行为和电输运性质的影响。研究结果表明: 制备的多晶样品均具有菱形对称结构; 三样品在低温磁转变温度(TC2)以上均存在类Griffiths相; La0.8Sr0.2Mn1-xCoxO3(x = 0, 0.1, 0.3)样品外加磁场为7 T的最大磁熵变ΔSmax分别为-2.28、-2.05和-2.75 J/(kg·K), Co元素的掺杂使得ΔSmax先减小后增大; 母相的临界行为与平均场模型拟合得最好, 掺杂后样品的临界行为和3D海森伯模型拟合最好; 母相为半导体材料, Co元素掺杂量达到0.1时在低温磁转变温度(TC2)附近出现金属绝缘体转变; 高温区三样品的导电方式均满足小极化子模型。
中图分类号:
刘娇, 王文清, 吴鸿业, 田野, 曹凤泽, 赵建军. Co掺杂钙钛矿锰氧化物La0.8Sr0.2MnO3电磁特性研究[J]. 无机材料学报, 2018, 33(11): 1237-1247.
LIU Jiao, WANG Wen-Qing, WU Hong-Ye, TIAN Ye, CAO Feng-Ze, ZHAO Jian-Jun. Electromagnetic Property of Co-doped La0.8Sr0.2MnO3 Perovskite Manganese Oxides[J]. Journal of Inorganic Materials, 2018, 33(11): 1237-1247.
Sample | a/nm | b/nm | V/nm 3 | c/nm |
---|---|---|---|---|
x=0 | 0.550993 | 0.5522 | 0.2032339 | 0.667965 |
x=0.1 | 0.551356 | 0.551354 | 0.2028696 | 0.667351 |
x=0.3 | 5.49571 | 5.49557 | 201.3505 | 6.66678 |
表1 La0.8Sr0.2Mn1-xCoxO3(x=0, 0.1, 0.3)样品的晶格参数和晶胞体积
Table 1 Lattice parameters and cell volume of La0.8Sr0.2Mn1-xCoxO3(x=0, 0.1 and 0.3) samples
Sample | a/nm | b/nm | V/nm 3 | c/nm |
---|---|---|---|---|
x=0 | 0.550993 | 0.5522 | 0.2032339 | 0.667965 |
x=0.1 | 0.551356 | 0.551354 | 0.2028696 | 0.667351 |
x=0.3 | 5.49571 | 5.49557 | 201.3505 | 6.66678 |
图2 La0.8Sr0.2Mn1-xCoxO3(x=0, 0.1, 0.3)样品在0.01 T磁场下的M-T曲线(a)~(c)和χT-T曲线(d)~(f), 插图为对应的dMFC/dT-T曲线
Fig. 2 M-T curves (a)~(c) and χT-T curves(d)~(f) for the La0.8Sr0.2Mn1-xCoxO3(x=0, 0.1, 0.3) samples at 0.01T magnetic field with the insets showing the corresponding dMFC/dT-T curves
图3 La0.8Sr0.2Mn1-xCoxO3(x=0, 0.1, 0.3)样品在0.01 T磁场下的Mirr-T曲线
Fig. 3 Mirr-T curves of La0.8Sr0.2Mn1-xCoxO3 (x = 0, 0.1, 0.3) samples at 0.01 T applied magnetic field
图4 La0.8Sr0.2Mn1-xCoxO3(x=0, 0.1, 0.3)样品在0.01 T磁场下χ-1-T曲线, 插图为0.01 T下的lgχ-1-lgtm曲线, 其中tm=(T-TC)/TC
Fig. 4 χ-1-T curves of the La0.8Sr0.2Mn1-xCoxO3(x=0, 0.1, 0.3) samples under a 0.01T magnetic field with the insets showing the lgχ-1 -lgtm curves at 0.01T, where tm=(T-TC)/TC
图5 La0.8Sr0.2Mn1-xCoxO3(x=0, 0.1, 0.3)样品在不同温度下磁化强度随外加磁场变化的M-H曲线(a)~(c)和等温Arrott曲线(H/M-M2)(d)~(f)
Fig. 5 M-H curves((a-c)) and isothermal Arrott curves ((d)~(f), H/M versus M2) of the magnetization of samples La0.8Sr0.2Mn1-xCoxO3 (x = 0, 0.1, 0.3) varying with the applied magnetic field at different temperatures
图6 La0.8Sr0.2MnO3(A)、La0.8Sr0.2Mn0.9Co0.1O3(B)和La0.8Sr0.2Mn0.7Co0.3O3(C)样品和平均场模型、3D海森伯模型、3D伊辛模型以及三临界模型的拟合图
Fig. 6 Fitting of La0.8Sr0.2MnO3(A), La0.8Sr0.2Mn0.9Co0.1O3(B) and La0.8Sr0.2Mn0.7Co0.3O3(C) sample curves to mean field, 3D-Heisenberg, 3D-Ising, and tricritical models
图7 La0.8Sr0.2MnO3(A)、La0.8Sr0.2Mn0.9Co0.1O3(B)和La0.8Sr0.2Mn0.7Co0.3O3(C)样品在居里温度以下自发磁化强度随温度的变化曲线MS-T(a)和MS (dMs/dT)-1-T(b)曲线 La0.8Sr0.2Mn0.7Co0.3O3样品在居里温度下零场磁化率倒数随温度的变化曲线χ0-1-T(c)和χ0-1 (dχ0-1/dT)-1-T曲线(d); 插图为相对应的Arrott-Plot
Fig. 7 Curves of spontaneous magnetization at temperatures below the Curie temperature for La0.8Sr0.2MnO3(A), La0.8Sr0.2Mn0.9Co0.1O3(B) and La0.8Sr0.2Mn0.7Co0.3O3(C) sample versus temperature MS-T (a), MS (dMs/dT)-1-T and their fitted straight lines (b); Curves of zero-field susceptibility reciprocal at temperatures above the Curie temperature for La0.8Sr0.2Mn0.7Co0.3O3 sample versus temperature χ0-1-T (c), χ0-1 (dχ0-1/dT)-1-T and their fitted straight lines(d); The illustrations are for the corresponding Arrott-Plot
图8 La0.8Sr0.2Mn1-xCoxO3(x=0 (a), 0.1 (b), 0.3 (c))样品分别在108~278 K、100~300 K和110~285 K的等磁场下磁熵变随温度的变化曲线(-ΔS-T)
Fig. 8 Curves of magnetic entropy change with temperature for the samples La0.8Sr0.2Mn1-xCoxO3 (x = 0 (a), 0.1 (b), 0.3 (c)) under the same magnetic field of 108~278 K, 100~300 K and 110~285 K, respectively (-ΔS-T)
图10 La0.8Sr0.2Mn1-xCoxO3(x=0, 0.1, 0.3)样品在外加磁场为2 T时, 磁电阻随温度的变化曲线(MR-T)
Fig. 10 Change of magnetoresistance with temperature (MR-T) at 2 T for La0.8Sr0.2Mn1-xCoxO3 (x = 0, 0.1, 0.3)
图11 La0.8Sr0.2Mn1-xCoxO3(x=0, 0.1, 0.3)样品的模型拟合线(lnρ-T-1), (ln(ρ/T)-T-1)和(lnρ-T-1/4)曲线
Fig. 11 Model fitting curves of La0.8Sr0.2Mn1-xCoxO3 (x=0, 0.1, 0.3), (ln(ρ-T-1), (ln(ρ/T)-T-1)and (lnρ-T-1/4) curves
[1] | CHABARA K, OHNO T, KASAI M, et al.Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl. Phys. Lett., 1993, 63(14): 1990-1992. |
[2] | JIN S, TIEFEL T H, MCCORMACK M, et al.Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films.Science, 1994, 264(5157): 413-415. |
[3] | MICHALOPOULOU A, SYSKAKIS E, PAPASTAIKOUDIS C.Calorimetric and electrical transport properties of stoichiometric La1-xSrxMnO3 compounds.Journal of Physics: Condensed Matter, 2003, 15(45): 7763-7775. |
[4] | ZHAO B C, SONG W H, MA Y Q, et al.Magnetic and transport properties of Co-doped manganite La0.7Sr0.3Mn1-xCoxO3(0≤x≤ 0.5). Phys. Stat. Sol., 2005, 242(8): 1719-1727. |
[5] | WANG GUI-YING, LIU NING. Studies on the influence of B doping on the magneto-electro-mechanical properties of perovskite manganese oxides. Journal of Suzhou University, 2008, 23(5):43, 108-111. |
[6] | El-HAGARY M, SHOKER Y A, MOHAMMAD S, et al.Structural and magnetic properties of polycrystalline La0.77Sr0.23Mn1-xCuxO3 (0≤x≤0.5) manganites.Journal of Alloys and Compounds, 2009, 468(1/2): 47-53. |
[7] | MUKADAM M D, YUSUF S M. Magnetocaloric effect in the La0.67Ca0.33Mn0.9Fe0.1O3 perovskite over a broad temperature range. Journal of Applied Physics, 2009, 105(6): 063910-1-3. |
[8] | LI BAO-HE, XIANYU WEN-XU, ZHANG JIAN, et al.Magnetism and giant magnetoresistance effect of calcium manganese oxide La0.7Sr0.3FexMn1-xO3.Journal of the Chinese Rare Earth Society, 2001, 19(2): 174-177. |
[9] | LI G, TANG P, SUN X, et al.Low temperature resistance minimum and its origin in La2/3Ca1/3Mn1-xCuxO3 (x = 0.15) system. Acta Phys. Sin., 1999, 48(3): 505-510. |
[10] | JIANG KUO, GONG SHENG-KAI.Effect of cobalt on the magnetoresistance characteristics of rare-earth doped manganites.Chinese Physics B, 2009, 18(7): 3035-3039. |
[11] | GRIFFITHS R B.Nonanalytic behavior above the critical point in a random ising ferromagnet.Phys. Rev. Lett., 1969, 23(1): 17-19. |
[12] | BRAY A J, MOORE M A.On the eigenvalue spectrum of the susceptibility matrix for random spin systems.J. Phys. C, 1982, 15(23): L765-L771. |
[13] | BRAY A J.Nature of the Griffiths phase.Phys. Rev. Lett., 1987, 59(5): 586-589. |
[14] | BRAY A J.Dynamics of dilute mangnets above TC.Phys. Rev. Lett., 1988, 60(8): 720-723. |
[15] | BRAY A J, HUIFANG D.Griffiths singularities in random magnets: results for a soluble model.Phys. Rev. B, 1989, 40(10): 6980-6986. |
[16] | ZHOU S M, LI Y, GUO Q, et al. Observation of a Griffiths-like phase in Ca-doped cobaltites. J. Appl. Phys., 2013, 114(16): 163903-1-6. |
[17] | ADEELA N, KHAN U, NAZ S, et al.Low temperature nucleation of Griffiths phase in Co doped LaMnO3 nanostructures.Applied Surface Science, 2017, 422: 184-191. |
[18] | JIANG KUO.Effect of Co doping on magnetoresistance of ferromagnetic La0.8Sr0.2MnO3. Acta Phys. Sin., 2010, 59(4): 2801-2807. |
[19] | HO T A, LIN S H, KIM C M, et al.Magnetic and magnetocaloric properties of La0.6Ca0.4-xCexMnO3.Journal of Magnetism and Magnetic Materials, 2017, 438: 1-20. |
[20] | LU CHENG-LIANG, HU NI, YANG MING, et al. High magnetic field phase diagram in electron-doped manganites La0.4Ca0.6Mn1-yCryO3. Scientific Reports, 2014, 4: 4902-1-7. |
[21] | BHAGYA UTHAMAN, ANAND K S, RAJEH KUMAR RGJAN, et al.Structural properties, magnetic interactions, magnetocaloric effect and critical behaviour of cobalt doped La0.7Te0.3MnO3.RSC Advances, 2015, 5(105): 86144-86155. |
[22] | ZHAO B C, MA Y Q, SONG W H, et al.Magnetization steps in the phase separated manganite La0.275Pr0.35Ca0.375MnO3. Physics Letters A, 2006, 354(5/6): 472-476. |
[23] | DEISENHOFER J, BRAAK D,KRUG VON NIDDA H A, et al. Observation of a Griffiths phase in paramagnetic La1-xSrxMnO3. Phys. Rev. Lett., 2005,95(25): 257202-1-4. |
[24] | XING RU, ZHENG LING, ZHOU MIN, et al.The study of Griffiths- like phase Gd-doping manganites Pr0.5Sr0.5MnO3.The Journal of Low Temperature, 2016, 38(6): 51-54. |
[25] | ZHANG PENG-YUE, YANG HANG-FU, ZHANG SU-YIN, et al.Magnetic and magnetocaloric properties of perovskite La0.7Sr0.3Mn1-xCoxO3.Physica B, 2013, 410: 1-4. |
[26] | BANERJEE B K.On a generalised approach to first and second order magnetic transitions.Phys. Lett., 1964, 12(1): 16-17. |
[27] | 苏彦涛. 钙钛矿型稀土钛酸盐晶体磁热效应及临界行为的研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2013. |
[28] | THANH TRAN DANG, LINH DINH CHI, MANH T V, et al. Coexistence of short- and long-range ferromagnetic order in La0.7Sr0.3MnxCo1-xO3 compounds. J. Appl. Phys., 2015, 117(17): 17C101-1-4. |
[29] | DORRA TURKI, ZAFAR KHAN GHOURI, SAEED AL-MEER, et al. Critical behavior of La0.7Ca0.3MnxCo1-xO3 perovskite (0.1<x<0.3).Magnetochemistry, 2017,3(3): 28-1-22. |
[30] | 鲁毅, 赵建军, 吴鸿业, 等. 磁性功能材料研究进展. 北京: 北京邮电大学出版社, 2013: 35-36. |
[31] | SUN XIAO-DONG, XU BAO, WU HONG-YE, et al. Magnetic entropy change and electric transport properties of Tb-doped double-layered manganese oxide La4/3Sr5/ 3Mn2O7. Acta Phys. Sin., 2017, 66(15): 157501-1-8. |
[32] | TROYANCHUK I O, EFIMOV D A, KHALYAVIN D D, et al.Magnetic ordering and magnetoresistive effect in La1-xSrx(Mn1-yMey)O3 perovskites(Me = Nb, Mg).Physics of the Solid State., 2000, 42(1): 81-85. |
[33] | ZHAO B C, SONG W H, MA Y Q, et al.Magnetic and transport properties of Co-doped manganite La0.7Sr0.3Mn1-xCoxO3 (0≤x≤0.5).Phys. Stat. Sol., 2005, 242(8): 1719-1727. |
[1] | 黄建锋, 梁瑞虹, 周志勇. W/Cr共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2024, 39(8): 887-894. |
[2] | 费玲, 雷蕾, 汪德高. 二维MXene材料在新型薄膜太阳能电池技术中的研究进展[J]. 无机材料学报, 2024, 39(2): 215-224. |
[3] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[4] | 汪波, 余健, 李存成, 聂晓蕾, 朱婉婷, 魏平, 赵文俞, 张清杰. Gd/Bi0.5Sb1.5Te3热电磁梯度复合材料的服役稳定性[J]. 无机材料学报, 2023, 38(6): 663-670. |
[5] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[6] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[7] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[8] | 陈雷, 胡海龙. 柔性PDMS基介电复合材料的电场及击穿损伤形貌演变规律研究[J]. 无机材料学报, 2023, 38(2): 155-162. |
[9] | 鲁志强, 刘可可, 李强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. p型多晶Bi0.5Sb1.5Te3合金类施主效应与热电性能[J]. 无机材料学报, 2023, 38(11): 1331-1337. |
[10] | 江润璐, 吴鑫, 郭昊骋, 郑琦, 王连军, 江莞. UiO-67基导电复合材料的制备及其热电性能研究[J]. 无机材料学报, 2023, 38(11): 1338-1344. |
[11] | 韦婷婷, 徐华蕊, 朱归胜, 龙神峰, 张秀云, 赵昀云, 江旭鹏, 宋金杰, 郭宁杰, 龚祎鹏. BaTiO3陶瓷的低温冷烧结制备及性能研究[J]. 无机材料学报, 2022, 37(8): 903-910. |
[12] | 程成, 李建波, 田震, 王鹏将, 康慧君, 王同敏. In2O3/InNbO4复合材料的热电性能研究[J]. 无机材料学报, 2022, 37(7): 724-730. |
[13] | 魏子钦, 夏翔, 李勤, 李国荣, 常江. 钛酸钡/硅酸钙复合生物活性压电陶瓷的制备及性能研究[J]. 无机材料学报, 2022, 37(6): 617-622. |
[14] | 姚晓刚, 彭海益, 顾忠元, 何飞, 赵相毓, 林慧兴. 聚苯醚/钙镧钛微波复合基板[J]. 无机材料学报, 2022, 37(5): 493-498. |
[15] | 叶芬, 江向平, 陈云婧, 黄枭坤, 曾仁芬, 陈超, 聂鑫, 成昊. (0.96NaNbO3-0.04CaZrO3)-xFe2O3反铁电陶瓷的介电及储能性能研究[J]. 无机材料学报, 2022, 37(5): 499-506. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||