[1] |
SEKHAR M C, VEENA E, KUMAR N S, et al. A review on piezoelectric materials and their applications. Crystal Research and Technology, 2023, 58(2): 2200130.
|
[2] |
WU J G. Perovskite lead-free piezoelectric ceramics. Journal of Appealed Physics, 2020, 127(19): 190901.
|
[3] |
MU G H, YANG S Y, LI X, et al. Several problems in PZT piezoelectric ceramics preparation. Material Reports, 2004, 18(3): 32.
|
[4] |
PANDA P K, SAHOO B. PZT to lead-free piezoceramics: a review. Ferroelectrics, 2015, 474(1): 128.
|
[5] |
ZHANG D S, TIAN A F. Electrical properties of K0.5Na0.5NbO3 lead-free piezoceramics by pressureless sintering. Journal of Inorganic Materials, 2013, 28(9): 967.
|
[6] |
WANG K, LI J F. Phase transition, sintering and property enhancement. Journal of Advanced Ceramics, 2012, 1(1): 24.
|
[7] |
ROEDEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 2015, 35(6): 1659.
|
[8] |
WANG K, SHEN Z Y, ZHANG B P, et al. (K,Na)NbO3-based lead-free piezoceramics: status, prospects and challenges. Journal of Inorganic Materials, 2014, 29(1): 15.
|
[9] |
YAO F Z, WU C F, LI J F, et al. Recent development on (K,Na)NbO3-based lead-free piezoceramics. Journal of the Chinese Ceramic Society, 2022, 50(3): 587.
|
[10] |
SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004, 432: 84.
|
[11] |
XU K, LI J, LV X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramic. Advanced Materials, 2018, 28(38): 8519.
|
[12] |
TAO H, WU H, LIU Y, et al. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. Journal of the American Chemical Society, 2019, 141(35): 13987.
|
[13] |
LIU Q, LI J F, ZHAO L, et al. Niobate-based lead-free piezoceramics: a diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficients. Journal of Material Chemistry, 2018, 6(5): 1116.
|
[14] |
ZHOU C M, ZHANG J L, YAO W Z, et al. Remarkably strong piezoelectricity, rhombohedral-orthorhombic-tetragonal phase coexistence and domain structure of (K,Na)(Nb,Sb)O3-(Bi,Na)ZrO3- BaZrO3 ceramics. Journal of Alloys and Compounds, 2020, 820: 153411.
|
[15] |
KIM H, KIM D S, CHAE S J, et al. Simultaneous realization of high d33 and large strain in (K,Na,Li)(Nb,Sb)O3-(Ca,Sr)ZrO3 materials and their application in piezoelectric actuators. Ceramics International, 2021, 47(24): 34443.
|
[16] |
LIU Q, ZHANG X, GAO J, et al. Practical high-performance lead-free piezoelectrics: structural flexibility beyond utilizing multiphase coexistence. National Science Reveal, 2020, 7(2): 355.
|
[17] |
DU H L, ZHANG M, SU X L, et al. Developments of grain oriented growth techniques of piezoelectric ceramics. Journal of Inorganic Materials, 2008, 23(1): 1.
|
[18] |
LEE G S, KIM J S, KIM S H, et al. Recent developments in (K,Na)NbO3-based lead-free piezoceramics. Micromachines, 2024, 15(3): 325.
|
[19] |
LI P, ZHAI J W, SHEN B, et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Advanced Materials, 2018, 30(8): 1705171.
|
[20] |
KIM D S, EUM J M, GO S H, et al. Remarkable piezoelectric performance and good thermal stability of <001>-textured 0.96(K0.5Na0.5)(Nb1-ySby)O3-0.04SrZrO3 lead-free piezoelectric ceramics. Journal of Alloys and Compounds, 2021, 882: 160662.
|
[21] |
GO S H, KIM H, KIM D S, et al. Improvement of piezoelectricity of (Na, K)Nb-based lead-free piezoceramics using [001]-texturing for piezoelectric energy harvesters and actuators. Journal of the European Ceramic Society, 2022, 42(14): 6478.
|
[22] |
LIU D, ZHU L F, TANG T, et al. Textured potassium sodium niobate lead-free ceramics with high d33 and Qm for meeting high-power applications. ACS Applied Materials and Interfaces, 2024, 16(6): 7444.
|
[23] |
ZHENG T, YU Y G, LEI H B, et al. Compositionally graded KNN-based multilayer composite with excellent piezoelectric temperature stability. Advanced Materials, 2022, 34(8): 2109175.
|
[24] |
SONG A Z, LIU Y X, FENG T Y, et al. Simultaneous enhancement of piezoelectricity and temperature stability in KNN-based lead-free ceramics via layered distribution of dopants. Advanced Functional Materials, 2022, 32(34): 2204385.
|
[25] |
ZHAO J B, DU H L, QU S B, et al. Improvement in the piezoelectric temperature stability of (K0.5Na0.5)NbO3 ceramics. Chinese Science Bulletin, 2011, 56(22): 2389.
|
[26] |
YIN B Y, HUAN Y, WANG Z X, et al. Enhanced thermal reliability of Mn-doped (K, Na)NbO3-based piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30(20): 18659.
|
[27] |
CHENG Y, XING J, LI X, et al. Meticulously tailoring phase boundary in KNN-based ceramics to enhance piezoelectricity and temperature stability. Journal of the American Ceramic Society, 2022, 105(8): 5213.
|