无机材料学报 ›› 2018, Vol. 33 ›› Issue (6): 623-628.DOI: 10.15541/jim20170361 CSTR: 32189.14.10.15541/jim20170361
宋晶晶1, 陈波1, 林开利2
收稿日期:
2017-08-07
修回日期:
2017-09-06
出版日期:
2018-06-20
网络出版日期:
2018-05-24
作者简介:
宋晶晶(1992-), 女, 硕士研究生. E-mail: 809078682@qq.com
基金资助:
SONG Jing-Jing1, CHEN Bo1, LIN Kai-Li2
Received:
2017-08-07
Revised:
2017-09-06
Published:
2018-06-20
Online:
2018-05-24
About author:
SONG Jing-Jing. E-mail: 809078682@qq.com
Supported by:
摘要:
核壳纳米颗粒是一种具有独特结构和性能的复合纳米材料, 在催化、生物医学和光子晶体等领域具有重要应用前景。本工作以羟基磷灰石(HAp)纳米颗粒作为核体、十六烷基三甲基溴化铵(CTAB)作为介孔模板剂, 采用改进的Stöber包覆法制备具有介孔结构的核壳HAp@mSiO2新型纳米颗粒。通过控制正硅酸四乙酯(TEOS)的浓度及其水解和缩合动力学, 可以有效调控HAp表面包覆的mSiO2壳层厚度。经TEM、EDS、XRD、FT-IR及BET一系列测试可知, 制备得到的HAp@mSiO2纳米颗粒具有比表面积大、孔径尺寸窄且分布均匀等特点。同时, 以布洛芬作为模板药物, 将制备得到的材料应用于药物释放实验, 发现该核壳材料还具有良好的药物控制性能和pH响应特性, 且可以通过改变mSiO2壳层厚度对药物释放速率进行有效调控。
中图分类号:
宋晶晶, 陈波, 林开利. 核壳结构羟基磷灰石/介孔二氧化硅纳米颗粒的制备及其药物释放研究[J]. 无机材料学报, 2018, 33(6): 623-628.
SONG Jing-Jing, CHEN Bo, LIN Kai-Li. Core-shell Structured Hydroxyapatite/Mesoporous Silica Nanoparticle: Preparation and Application in Drug Delivery[J]. Journal of Inorganic Materials, 2018, 33(6): 623-628.
图1 内核HAp及包覆不同壳层的HAp@mSiO2的TEM照片
Fig. 1 TEM images of the kernel HAp and HAp@mSiO2 coated with different shells(a, b) HAp; (c, d) HAp@mSiO2-1; (e, f) HAp@mSiO2-2; (g, h) HAp@mSiO2-3
图3 核HAp及不同壳层厚度HAp@mSiO2的XRD图谱
Fig. 3 XRD patterns of core HAp and HAp@mSiO2 with different shell thicknesses(a) HAp; (b) HAp@mSiO2-1; (c) HAp@mSiO2-2; (d) HAp@mSiO2-3
图4 核HAp及不同壳层厚度HAp@mSiO2的红外谱图
Fig. 4 FT-IR spectra of core HAp and HAp@mSiO2 with different shell thicknesses(a) HAp; (b) HAp@mSiO2-1; (c) HAp@mSiO2-2; (d) HAp@mSiO2-3
Samples | Vp/(cm3·g-1) | SBET/(m2·g-1) | Dp/nm | Shell thickness/nm |
---|---|---|---|---|
HAp | 1.024 | 69.7 | 1.689 | — |
HAp@mSiO2-1 | 0.608 | 653.4 | 1.929 | 9.59 |
HAp@mSiO2-2 | 0.591 | 666.6 | 2.188 | 10.01 |
HAp@mSiO2-3 | 0.467 | 714.1 | 2.450 | 12.97 |
表1 内核HAp及不同HAp@mSiO2样品的孔径、比表面积及壳层厚度比较
Table 1 Pore size, specific surface area, and shell thickness for kernel HAp and different HAp@mSiO2 samples
Samples | Vp/(cm3·g-1) | SBET/(m2·g-1) | Dp/nm | Shell thickness/nm |
---|---|---|---|---|
HAp | 1.024 | 69.7 | 1.689 | — |
HAp@mSiO2-1 | 0.608 | 653.4 | 1.929 | 9.59 |
HAp@mSiO2-2 | 0.591 | 666.6 | 2.188 | 10.01 |
HAp@mSiO2-3 | 0.467 | 714.1 | 2.450 | 12.97 |
图5 内核HAp及不同壳层厚度HAp@mSiO2的N2-吸脱附图
Fig. 5 N2 adsorption/desorption isotherms for core HAp and HAp@mSiO2 with different shell thicknesses(a) HAp; (b) HAp@mSiO2-1; (c) HAp@mSiO2-2; (d) HAp@mSiO2-3
图6 核HAp及不同壳层厚度HAp@mSiO2吸附IBU后的累计释放量
Fig. 6 Cumulative IBU release from core HAp and HAp@mSiO2 with different shell thicknesses in the release media of PBS (pH=7.4)
[1] | JAE YUN-KIM, JI EUN-LEE, JIN WOO-LEE,et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society, 2006, 128(3): 688-689. |
[2] | LIANG ZHI-JIAN, ANDREI SUSHA, FRANK CARUSO.Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chemistry of Materials, 2003, 15(16): 3176-3183. |
[3] | ZHANG KAI, ZHENG LIN-LI, ZHANG XUE-HAI,et al. Silica- PMMA core-shell and hollow nanospheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277(1): 145-150. |
[4] | ZHOU JUAN, CHEN MIN, QIAO XIAO-GUANG,et al. Facile preparation pethod of SiO2/PS/TiO2 multilayer core-shell hybrid microspheres. Langmuir, 2006, 22(24): 10175-10179. |
[5] | CAI WEI-QUAN, YU JIA-GUO, CHENG BEI,et al. Synthesis of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment. The Journal of Physical Chemistry C, 2009, 113(33): 14739-14746. |
[6] | CHEN YU, CHEN HANG-RONG, ZENG DE-PING,et al. Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano, 2010, 4(10): 6001-6013. |
[7] | GE JIAN-PING, HU YONG-XING, YIN YA-DONG.Highly tunable superparamagnetic colloidal photonic crystals. Angewandte Chemie International Edition, 2007, 119(39): 7572-7575. |
[8] | HUANG XIAO-QING, TANG SHAO-HENG, LIU BI-JU,et al. Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture. Advanced Materials, 2011, 23(30): 3420-3425. |
[9] | CHAUDHURI GHOSH RAJIB, PARIA SANTANU.Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications.Chemical Reviews, 2012, 112(4): 2373-2433. |
[10] | LIN KAI-LI, PAN JIA-YONG, CHEN YI-WEI,et al. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. Journal of Hazardous Materials, 2009, 161(1): 231-240. |
[11] | ZHI WEI, SHI FENG, LI JING-YU,et al. Surface microstructure on hydroxyapatite spherules and its regulation on stem cells. Journal of Inorganic Materials, 2017, 32(3): 319-325. |
[12] | ZHU YU-FANG, ZHU MIN, XIN CHEN,et al. Hydroxyapatite whisker-reinforced composite scaffolds through 3D printing for bone repair. Journal of Inorganic Materials, 2017, 32(8): 837-844. |
[13] | CHEN W, LIU Y, COURTNEY H,et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials, 2006, 27(32): 5512-5517. |
[14] | SUN HAO, SU FANG-ZHENG, NI JI,et al. Gold supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oximes. Angewandte Chemie International Edition, 2009, 48(24): 4390-4393. |
[15] | LIN KAI-LI, CHEN LEI, LIU PEI-YI,et al. Hollow magnetic hydroxyapatite microspheres with hierarchically mesoporous microstructure for pH-responsive drug delivery. CrystEngComm, 2013, 15(15): 2999-3008. |
[16] | ZHU KAI-PING, SUN JING, YE SONG, et al. A novel hollow hydroxyapatite microspheres/chitosan composite drug carrier for controlled release. Journal of Inorganic Materials, 2016, 31(4): 434-442. |
[17] | LAI CHENG-YU, TREWYN B G, JEFTINIJA D M,et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society, 2003, 125(15): 4451-4459. |
[18] | SHI JIAN-LIN, ZHANG LIN-XIA.Nanocomposites from ordered mesoporous materials.Journal of Materials Chemistry, 2004, 14(5): 795-806. |
[19] | YU CHENG-ZHOU, FAN JIE, TIAN BO-ZHI,et al. Morphology development of mesoporous materials: a colloidal phase separation mechanism. Chemistry of Materials, 2004, 16(5): 889-898. |
[20] | QI MEI-LI, QI JIA, XIAO GUI-YONG, et al. Effect of surfactants on the morphology of hydroxyapatite fibers. Journal of Inorganic Materials, 2016, 31(4): 726-730. |
[21] | LIU CONG-YING, GUO JIA, YANG WU-LI,et al. Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. Journal of Materials Chemistry, 2009, 19(27): 4764-4770. |
[22] | SUK BON YOON, KWONNAM SOHN, JEONG YEONY KIM,et al. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures. Advanced Materials, 2002, 14(1): 19-21. |
[23] | LI WEI, ZHAO DONG-YUAN.Extension of the Stöber method to construct mesoporous SiO2 and TiO2 shells for uniform multifunctional core-shell structures.Advanced Materials, 2013, 25(1): 142-149. |
[24] | AHMED MOHAMED EL-TONI, SHU YIN, TSUGIO SATO. Control of silica shell thickness and microporosity of titania-silica core-shell type nanoparticles to depress the photocatalytic activity of titania.Journal of Colloid and Interface Science, 2006, 300(1): 123-130. |
[25] | FOWLER B.Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution.Inorganic Chemistry, 1974, 13(1): 194-207. |
[26] | HAO LI-JING, YANG HUI, ZHAO NA-RU,et al. Hydrothermal synthesis of hydroxyapatite fibers precipitated by propionmide. Journal of Inorganic Materials, 2013, 28(1): 63-68. |
[27] | KANG XIAO-JIAO, CHENG ZI-YONG, LI CHUN-XIA,et al. Core-shell structured up-conversion luminescent and mesoporous NaYF4: Yb3+/Er3+@nSiO2@mSiO2 nanospheres as carriers for drug delivery. The Journal of Physical Chemistry C, 2011, 115(32): 15801-15811. |
[28] | HIDEO HATA, SHUUYA SAEKI, TATSUO KIMURA,et al. Adsorption of taxol into ordered mesoporous silicas with various pore diameters. Chemistry of Materials, 1999, 11(4): 1110-1119. |
[29] | ZHAO CHUN-XIA, YU LEI, ANTON P J MIDDELBERG. Magnetic mesoporous silica nanoparticles end-capped with hydroxyapatite for pH-responsive drug release.Journal of Materials Chemistry B, 2013, 1(37): 4828-4833. |
[1] | 杨恩东, 李宝乐, 张珂, 谭鲁, 娄永兵. ZnCo2O4-ZnO@C@CoS核壳复合材料的制备及其在超级电容器中的应用[J]. 无机材料学报, 2024, 39(5): 485-493. |
[2] | 张婷婷, 王方园, 刘长友, 张国荣, 吕佳辉, 宋宇晨, 介万奇. 水热-烧结法制备Cr2+:ZnSe/ZnSe核壳结构纳米孪晶[J]. 无机材料学报, 2024, 39(4): 409-415. |
[3] | 李承瑜, 丁自友, 韩颖超. 锰掺杂纳米羟基磷灰石的体外抗菌-促成骨性能研究[J]. 无机材料学报, 2024, 39(3): 313-320. |
[4] | 岳全鑫, 郭瑞华, 王瑞芬, 安胜利, 张国芳, 关丽丽. 3D核壳结构NiMoO4@CoFe-LDH纳米棒的高效析氧及全解水性能研究[J]. 无机材料学报, 2024, 39(11): 1254-1264. |
[5] | 吴锐, 张敏慧, 金成韵, 林健, 王德平. 光热核壳TiN@硼硅酸盐生物玻璃纳米颗粒的降解和矿化性能[J]. 无机材料学报, 2023, 38(6): 708-716. |
[6] | 马晓森, 张丽晨, 刘砚超, 汪全华, 郑家军, 李瑞丰. 13X@SiO2合成及其甲苯吸附性能[J]. 无机材料学报, 2023, 38(5): 537-543. |
[7] | 刘妍, 张宇帆, 王茜蔓, 李婷, 马文婷, 杨富巍, 陈靓, 赵东月, 严小琴. 基于羟基磷灰石材料的风化脆弱骨质文物加固保护研究[J]. 无机材料学报, 2023, 38(11): 1345-1354. |
[8] | 迟聪聪, 屈盼盼, 任超男, 许馨, 白飞飞, 张丹洁. SiO2@Ag@SiO2@TiO2核壳结构的制备及其光催化降解性能[J]. 无机材料学报, 2022, 37(7): 750-756. |
[9] | 陈亚玲, 舒松, 王劭鑫, 李建军. Mn-HAP基低温SCR催化剂的制备及抗硫中毒性能[J]. 无机材料学报, 2022, 37(10): 1065-1072. |
[10] | 陈小梅, 陈颖, 袁霞. 核壳材料Co3O4@SiO2催化环己基过氧化氢分解[J]. 无机材料学报, 2022, 37(1): 65-71. |
[11] | 朱雨桐, 谭佩洁, 林海, 朱向东, 张兴栋. 可注射透明质酸/羟基磷灰石复合材料: 制备、理化性能和细胞相容性[J]. 无机材料学报, 2021, 36(9): 981-990. |
[12] | 林子扬, 常宇辰, 吴章凡, 包荣, 林文庆, 王德平. 不同模拟体液对硼硅酸盐生物活性玻璃基骨水泥矿化性能的影响[J]. 无机材料学报, 2021, 36(7): 745-752. |
[13] | 吴永豪, 李向锋, 朱向东, 张兴栋. 高强度羟基磷灰石纳米陶瓷的构建及其促成骨细胞活性研究[J]. 无机材料学报, 2021, 36(5): 552-560. |
[14] | 宋可可, 黄浩, 鲁梦婕, 杨安春, 翁杰, 段可. 水热制备锌、硅、镁、铁等元素掺杂羟基磷灰石及其表征[J]. 无机材料学报, 2021, 36(10): 1091-1096. |
[15] | 邵悦婷, 朱英杰, 董丽颖, 蔡安勇. 羟基磷灰石超长纳米线/植物纤维纳米复合“宣纸”及其防霉性能[J]. 无机材料学报, 2021, 36(1): 107-112. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1444
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1028
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||