无机材料学报 ›› 2021, Vol. 36 ›› Issue (9): 981-990.DOI: 10.15541/jim20210020 CSTR: 32189.14.10.15541/jim20210020
所属专题: 【虚拟专辑】抗菌材料(2020~2021)
收稿日期:
2021-01-11
修回日期:
2021-01-22
出版日期:
2021-09-20
网络出版日期:
2021-03-01
通讯作者:
林 海, 副研究员. E-mail: linhai028@scu.edu.cn
作者简介:
朱雨桐(1997-), 女, 硕士. E-mail: 876073900@qq.com
基金资助:
ZHU Yutong(), TAN Peijie, LIN Hai(
), ZHU Xiangdong, ZHANG Xingdong
Received:
2021-01-11
Revised:
2021-01-22
Published:
2021-09-20
Online:
2021-03-01
Contact:
LIN Hai, associate professor. E-mail: linhai028@scu.edu.cn
About author:
ZHU Yutong (1997-), female, master. E-mail: 876073900@qq.com
Supported by:
摘要:
羟基磷灰石(HAP)具有优异的生物相容性、生物活性和缓慢的降解速率等特性, 有可能弥补透明质酸(HA)用作软组织填充材料的不足。本研究采用一步反应法制备均匀负载HAP颗粒的HA-HAP复合水凝胶, 分析了制备工艺参数对复合水凝胶理化性能的影响及调控方法, 评价了其细胞相容性。结果表明, 采用该方法制备的复合水凝胶含1.5%~3.0%HA、2.38%~15.8% HAP, 具有良好的灭菌稳定性。通过改变HAP含量和交联剂的用量可以调控复合水凝胶的力学性能、溶胀行为等理化性能。利用一阶指数衰减方程可以较好地拟合复合水凝胶的溶胀行为, 质量溶胀率在1 h时已达到平衡溶胀率的90%以上。复合水凝胶具有良好的HA酶降解性, 1500 U/mL的酶作用2 min后HA降解率超过95%, 复合水凝胶可以快速溃散; 加入HAP颗粒不仅使复合水凝胶有更好的可塑性, 而且更有利于面部软组织填充和轮廓修正。优化制备的可注射HA-HAP复合水凝胶具有可调的理化性能和良好的细胞相容性, 可以较长时间地保留在体内, 兼具促进组织修复或重建的潜力, 有望成为优良的软组织填充材料。
中图分类号:
朱雨桐, 谭佩洁, 林海, 朱向东, 张兴栋. 可注射透明质酸/羟基磷灰石复合材料: 制备、理化性能和细胞相容性[J]. 无机材料学报, 2021, 36(9): 981-990.
ZHU Yutong, TAN Peijie, LIN Hai, ZHU Xiangdong, ZHANG Xingdong. Injectable Hyaluronan/Hydroxyapatite Composite: Preparation, Physicochemical Property and Biocompatibility[J]. Journal of Inorganic Materials, 2021, 36(9): 981-990.
Sample | HA/wt% | HAP/wt% | BDDE equivalent |
---|---|---|---|
HA-1.0 | 10 | 0 | 1.0 |
HAP15-0.5 | 10 | 15 | 0.5 |
HAP30-0.5 | 10 | 30 | 0.5 |
HAP30-1.0 | 10 | 30 | 1.0 |
HAP45-1.0 | 10 | 45 | 1.0 |
表1 各复合水凝胶样品制备时HA、HAP与BDDE的用量
Table 1 Amount of HA, HAP and BDDE in preparing composite hydrogels
Sample | HA/wt% | HAP/wt% | BDDE equivalent |
---|---|---|---|
HA-1.0 | 10 | 0 | 1.0 |
HAP15-0.5 | 10 | 15 | 0.5 |
HAP30-0.5 | 10 | 30 | 0.5 |
HAP30-1.0 | 10 | 30 | 1.0 |
HAP45-1.0 | 10 | 45 | 1.0 |
Sample | Before dialysis | After dialysis | ||
---|---|---|---|---|
HA/% | HAP/% | HA/% | HAP/% | |
HA-1.0 | 10 | 0 | 2.01 | - |
HAP15-0.5 | 10 | 15 | 1.58 | 2.38 |
HAP30-0.5 | 10 | 30 | 1.54 | 4.63 |
HAP30-1.0 | 10 | 30 | 2.19 | 7.73 |
HAP45-1.0 | 10 | 45 | 3.00 | 15.8 |
表2 复合水凝胶透析前后的HA与HAP含量
Table 2 Contents of HA and HAP in different composites before and after dialysis
Sample | Before dialysis | After dialysis | ||
---|---|---|---|---|
HA/% | HAP/% | HA/% | HAP/% | |
HA-1.0 | 10 | 0 | 2.01 | - |
HAP15-0.5 | 10 | 15 | 1.58 | 2.38 |
HAP30-0.5 | 10 | 30 | 1.54 | 4.63 |
HAP30-1.0 | 10 | 30 | 2.19 | 7.73 |
HAP45-1.0 | 10 | 45 | 3.00 | 15.8 |
图2 复合水凝胶灭菌前后的形态
Fig. 2 Appearance of composite hydrogels before and after autoclaving (A) Fully dialyzed; (B) Not dialyzed. From left to right: HA-1.0, HAP15-0.5, HAP30-0.5, HAP30-1.0, and HAP45-1.0
图3 含残留交联剂的复合水凝胶HAP45-1.0灭菌后的形态
Fig. 3 Appearance of composite hydrogels HAP45-1.0 with remained crosslinking reagents From left to right: fully dialyzed, alkali-contained, cross linker-contained
图4 水凝胶材料灭菌前后储能模量(a)、损耗模量(b)及复合黏度(c)的变化
Fig. 4 Storage modulus (a), loss modulus (b) and composite viscosity (c) of hydrogels before and after sterilization
图7 复合水凝胶HAP45-1.0的溶胀行为及稳定性
Fig. 7 Swelling behavior of composite hydrogel HAP45-1.0 and stabilization in vitro (A) Mass and volume swelling rate; (B) Sizes of samples before and after swelling for 8 h; (C) Stability of the samples immersed in PBS for different periods
A | y0 | R2 | |
---|---|---|---|
Mass swelling rate | -51.64 | 51.64 | 0.9992 |
Volume swelling rate | -78.81 | 78.66 | 0.9984 |
表3 复合水凝胶HAP45-1.0溶胀率的一阶指数衰减拟合参数
Table 3 The 1st order exponential decay equation fitting results of hydrogel HAP45-1.0 swelling behavior
A | y0 | R2 | |
---|---|---|---|
Mass swelling rate | -51.64 | 51.64 | 0.9992 |
Volume swelling rate | -78.81 | 78.66 | 0.9984 |
[1] |
DE VRIES C G, GEERTSMA R E. Clinical data on injectable tissue fillers: a review. Expert Review of Medical Devices, 2013, 10(6):835-853.
DOI URL |
[2] |
ORTIZ A E, AHLUWALIA J, SONG S S, et al. Analysis of U.S. food and drug administration data on soft-tissue filler complications. Dermatologic Surgery, 2020, 46(7):958-961.
DOI URL |
[3] | BUCK D W, ALAM M, KIM J Y S. Injectable fillers for facial rejuvenation: a review. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2009, 62(1):11-18. |
[4] |
ALIJOTAS-REIG J, FERNÁNDEZ-FIGUERAS M T, PUIG L. Inflammatory, immune-mediated adverse reactions related to soft tissue dermalfillers. Seminars in Arthritis and Rheumatism, 2013, 43(2):241-258.
DOI URL |
[5] |
BRANDT F S, CAZZANIGA A. Hyaluronic acid gel fillers in the management of facial aging. Clinical Interventions in Aging, 2008, 3(1):153-159.
DOI URL |
[6] |
SHARMA P, SHARMA S. Comparative study of a new dermal filler uma jeunesse and juvéderm. Journal of Cosmetic Dermatology, 2011, 10(2):118-125.
DOI URL |
[7] |
YANG R, TAN L, CEN L, et al. An injectable scaffold based on crosslinked hyaluronic acid gel for tissue regeneration. RSC Advances, 2016, 6(20):16838-16850.
DOI URL |
[8] |
CHOI S C, YOO M A, LEE S Y, et al. Modulation of biomechanical properties of hyaluronic acid hydrogels by crosslinking agents. Journal of Biomedical Materials Research Part A, 2015, 103(9):3072-3080.
DOI URL |
[9] |
YEOM J, BHANG S H, KIM B S, et al. Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration. Bioconjugate Chemistry, 2010, 21(2):240-247.
DOI URL |
[10] | LOGHEM J V, YUTSKOVSKAYA Y A, WERSCHLER W P. Calcium hydroxylapatite: over a decade of clinical experience. Journal of Clinical and Aesthetic Dermatology, 2015, 8(1):38-49. |
[11] | GRAIVIER M H, BASS L S, BUSSO M, et al. Calcium hydroxylapatite (radiesse) for correction of the mid- and lower face: consensus recommendations. Plastic & Reconstructive Surgery, 2007, 120(Suppl. 6):55S-66S. |
[12] | EMER J, SUNDARAM H. Aesthetic applications of calcium hydroxylapatite volumizing filler: an evidence-based review and discussion of current concepts. Journal of Drugs in Dermatology Jdd., 2013, 12(12):1345-1354. |
[13] |
LIU Y, WU Y H, LIN H, et al. Study on an injectable biomedical paste using cross-linked sodium hyaluronate as a carrier of hydroxyapatite particles. Carbohydrate Polymers, 2018, 195:378-386.
DOI URL |
[14] |
REDBORD K P, BUSSO M, HANKO C W. Soft-tissue augmentation with hyaluronic acid and calcium hydroxyl apatite fillers. Dermatologic Therapy, 2011, 24(1):71-81.
DOI URL |
[15] | EVIATAR J, LO C, KIRSZROT J. Radiesse: advanced techniques and applications for a unique and versatile implant. Plastic and Reconstructive Surgery, 2015, 136(Suppl. 5):164S-170S. |
[16] |
JEONG S H, FAN Y F, BAEK J U, et al. Long-lasting and bioactive hyaluronic acid-hydroxyapatite composite hydrogels for injectable dermal fillers: physical properties and in vivo durability. Journal of Biomaterials Applications, 2016, 31(3):464-474.
DOI URL |
[17] |
FAKHARI A, BERKLAND C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomaterialia, 2013, 9(7):7081-7092.
DOI URL |
[18] |
BOULLE K, GLOGAU R, KONO T, et al. A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatologic Surgery, 2013, 39(12):1758-1766.
DOI URL |
[19] | PAN H H, TAO J H, WU T, et al. Molecular simulation of water behaviours on hydroxyapatite crystal faces. Chinese Journal of Inorganic Chemistry, 2006, 22(8):1392-1400. |
[20] |
DAI Z, RONHOLM J, TIAN Y P, et al. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J. Tissue Eng., 2016, 7:1-13.
DOI URL |
[21] | GALANTE R, PINTO T J A, COLACO R, et al. Sterilization of hydrogels for biomedical applications: a review. J. Biomed. Mater. Res., 2017, B6:106. |
[22] |
WENDE F J, COHIL S, NORD L I, et al. 1D NMR methods for determination of degree of cross-linking and BDDE substitution positions in HA hydrogels. Carbohyd. Polym., 2017, 157:1525-1530.
DOI URL |
[23] |
HARIDAS J, ROSEMARY M J. Effect of steam sterilization and biocompatibility studies of hyaluronic acid hydrogel for viscosupplementation. Polymer Degradation and Stability, 2019, 163:220-227.
DOI URL |
[24] | FENG X D. Study on the mechanism of initial dark oxidation of ether. Chemical Journal of Chinese Universities, 1998, 19(7):1181-1183. |
[25] |
LÓPEZ J F, DEGLESNE P A, ARROYO R, et al. Detection of a new reaction by-product in BDDE cross-linked autoclaved hyaluronic acid hydrogels by LC-MS analysis. Medical Devices: Evidence and Research, 2018, 11:367-376.
DOI URL |
[26] |
BAEK J, FAN Y F, JEONG S H, et al. Facile strategy involving low-temperature chemical cross-linking to enhance the physical and biological properties of hyaluronic acid hydrogel. Carbohyd. Polym., 2018, 202:545-553.
DOI URL |
[27] | FERRY J D. Viscoelastic Properties of Polymers, 2nd edition. New York: Wiley-Interscience, 1970, 8:595. |
[28] |
BARBUCCI R, LAMPONI S, BORZACCHIELLO A, et al. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials, 2002, 23:4503-4513.
DOI URL |
[29] |
CHANG J W, KOO W Y, KIM E K, et al. Facial rejuvenation using a mixture of calcium hydroxylapatite filler and hyaluronic acid filler. Journal of Craniofacial Surgery, 2020, 31(1):e18-e21.
DOI URL |
[30] |
WIBOWO A, KAPOOR K M, PHILIPP-DORMSTON W G. Reversal of post-filler vision loss and skin ischaemia with high-dose pulsed hyaluronidase injections. Aesthetic Plastic Surgery, 2019, 43(5):1337-1344.
DOI URL |
[31] | KIM D W, YOON E S, JI Y H, et al. Vascular complications of hyaluronic acid fillers and the role of hyaluronidase in management. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2011, 64:1590-1595. |
[32] | TANO T, ONO K, HIRATSUKA Y, et al. Retinal vessel diameters in a Japanese population: the locomotive syndrome and health outcome in Aizu cohort study. Acta Ophthalmologica, 2016, 94(6):431-441. |
[33] |
WANG M, LI W, ZHANG Y, et al. Comparison of intra-arterial and subcutaneous testicular hyaluronidase injection treatments and the vascular complications of hyaluronic acid filler. Dermatologic Surgery, 2017, 43(2):246-254.
DOI URL |
[34] |
OHBA S, SUMITA Y, UMEBAYASHI M, et al. Onlay bone augmentation on mouse calvarial bone using a hydroxyapatite/ collagen composite material with total blood or platelet-rich plasma. Arch. Oral. Biol., 2016, 61:23-27.
DOI URL |
[35] | FLINT P W, CORIO R L, CUMMINGS C W. Comparison of soft tissue response in rabbits following laryngeal implantation with hydroxylapatite, silicone rubber, and Teflon. Ann. Oto. Rhinol. Laryn., 1997, 106(5):399-407. |
[36] | REBELLATO P R O, TORRE D S, RASTELLI G J C, et al. Calcium hydroxylapatite for collagen biostimulation in the neck. Int. J. Dermatol. Venereology Leprosy Sci., 2020, 3(1):27-31. |
[1] | 李承瑜, 丁自友, 韩颖超. 锰掺杂纳米羟基磷灰石的体外抗菌-促成骨性能研究[J]. 无机材料学报, 2024, 39(3): 313-320. |
[2] | 刘妍, 张宇帆, 王茜蔓, 李婷, 马文婷, 杨富巍, 陈靓, 赵东月, 严小琴. 基于羟基磷灰石材料的风化脆弱骨质文物加固保护研究[J]. 无机材料学报, 2023, 38(11): 1345-1354. |
[3] | 陈亚玲, 舒松, 王劭鑫, 李建军. Mn-HAP基低温SCR催化剂的制备及抗硫中毒性能[J]. 无机材料学报, 2022, 37(10): 1065-1072. |
[4] | 林子扬, 常宇辰, 吴章凡, 包荣, 林文庆, 王德平. 不同模拟体液对硼硅酸盐生物活性玻璃基骨水泥矿化性能的影响[J]. 无机材料学报, 2021, 36(7): 745-752. |
[5] | 王恩典, 常江. 钼掺杂铜硅钙石的制备及其抗菌性能和细胞相容性研究[J]. 无机材料学报, 2021, 36(7): 738-744. |
[6] | 吴永豪, 李向锋, 朱向东, 张兴栋. 高强度羟基磷灰石纳米陶瓷的构建及其促成骨细胞活性研究[J]. 无机材料学报, 2021, 36(5): 552-560. |
[7] | 宋可可, 黄浩, 鲁梦婕, 杨安春, 翁杰, 段可. 水热制备锌、硅、镁、铁等元素掺杂羟基磷灰石及其表征[J]. 无机材料学报, 2021, 36(10): 1091-1096. |
[8] | 邵悦婷, 朱英杰, 董丽颖, 蔡安勇. 羟基磷灰石超长纳米线/植物纤维纳米复合“宣纸”及其防霉性能[J]. 无机材料学报, 2021, 36(1): 107-112. |
[9] | 孙团伟,朱英杰. 一步溶剂热法合成锶掺杂羟基磷灰石超长纳米线[J]. 无机材料学报, 2020, 35(6): 724-728. |
[10] | 刘子阳, 耿振, 李朝阳. 牡蛎壳为原料制备医用CaCO3/HA复合生物材料[J]. 无机材料学报, 2020, 35(5): 601-607. |
[11] | 代钊,王铭,王双,李静,陈翔,汪大林,祝迎春. 氧化锆基微量元素共掺杂羟基磷灰石增韧涂层研究[J]. 无机材料学报, 2020, 35(2): 179-186. |
[12] | 付亚康,翁杰,刘耀文,张科宏. 钛网表面含hBMP-2的复合涂层制备及hBMP-2的释放研究[J]. 无机材料学报, 2020, 35(2): 173-178. |
[13] | 周子航, 王群, 葛翔, 李朝阳. 掺锶羟基磷灰石纳米颗粒的合成、表征及模拟研究[J]. 无机材料学报, 2020, 35(11): 1283-1289. |
[14] | 肖文谦,张静,李克江,邹新宇,蔡昱东,李波,刘雪,廖晓玲. 荔枝状CaCO3@HA/Fe3O4磁性介孔多级微球的制备[J]. 无机材料学报, 2019, 34(9): 925-932. |
[15] | 吴金结, 李艳, 魏仁初, 汪建新, 屈树新, 翁杰, 智伟. 微振动应力环境影响羟基磷灰石陶瓷生物活性及力学稳定性的体外评价[J]. 无机材料学报, 2019, 34(4): 417-424. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||