无机材料学报 ›› 2024, Vol. 39 ›› Issue (3): 313-320.DOI: 10.15541/jim20230438 CSTR: 32189.14.10.15541/jim20230438
所属专题: 【生物材料】骨骼与齿类组织修复(202409)
收稿日期:
2023-09-24
修回日期:
2023-10-15
出版日期:
2024-03-20
网络出版日期:
2023-11-22
通讯作者:
韩颖超, 研究员. E-mail: hanyingchao@whut.edu.cn作者简介:
李承瑜(1995-), 男, 博士研究生. E-mail: lcy9524@foxmail.com
基金资助:
LI Chengyu(), DING Ziyou, HAN Yingchao(
)
Received:
2023-09-24
Revised:
2023-10-15
Published:
2024-03-20
Online:
2023-11-22
Contact:
HAN Yingchao, professor. E-mail: hanyingchao@whut.edu.cnAbout author:
LI Chengyu(1995-), male, PhD candidate. E-mail: lcy9524@foxmail.com
Supported by:
摘要:
羟基磷灰石(HAP)作为一种常见的骨修复材料, 在治疗感染性骨缺损时仍面临着细菌感染的风险, 有限的骨诱导能力也阻碍了其进一步应用。本研究采用共沉淀法制备了一种锰掺杂羟基磷灰石纳米棒(MnHAP), 该纳米材料兼具优良的细胞生物相容性, 高抗菌效率和骨诱导能力。抗菌实验表明, MnHAP10(n(Mn)/n(Ca+Mn)=10%))对大肠杆菌和金黄色葡萄球菌的抑制率可分别达到77.85%和75.92%, 并且在808 nm近红外光照射下, 对大肠杆菌的抗菌效率得到了进一步增强(97.63%)。细胞增殖以及相关成骨基因实验表明, MnHAP有利于成骨细胞的增殖分化, 提高了对蛋白质的吸附能力和成骨活性, 促进了相关成骨基因的表达, 且具有良好的生物相容性。MnHAP纳米棒有望为感染性骨缺损治疗提供一种新的思路。
中图分类号:
李承瑜, 丁自友, 韩颖超. 锰掺杂纳米羟基磷灰石的体外抗菌-促成骨性能研究[J]. 无机材料学报, 2024, 39(3): 313-320.
LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite[J]. Journal of Inorganic Materials, 2024, 39(3): 313-320.
图1 MnHAP的微观形貌和结构分析
Fig. 1 Morphologies and structures of MnHAP (a) XRD patterns of MnHAP and HAP; (b-f) SEM images of HAP (b), MnHAP1 (c), MnHAP5 (d), MnHAP10 (e), and MnHAP20 (f); (g-k) TEM images of HAP (g), MnHAP1 (h), MnHAP5 (i), MnHAP10 (j) and MnHAP20 (k); (l-p) Selected area diffraction pattern of HAP (l), MnHAP1 (m), MnHAP5 (n), MnHAP10 (o), and MnHAP20 (p)
Sample | a-axis/Å | c-axis/Å | Volume/Å3 | Crytallinity/% |
---|---|---|---|---|
HAP | 9.41129 | 6.88743 | 528.31 | 61.77 |
MnHAP1 | 9.41083 | 6.88255 | 528.78 | 62.92 |
MnHAP5 | 9.40699 | 6.88027 | 527.74 | 61.72 |
MnHAP10 | 9.40415 | 6.87068 | 527.4 | 55.98 |
MnHAP20 | 9.40065 | 6.86074 | 527.11 | 50.36 |
表1 MnHAP和HAP的晶格参数, 晶胞体积和结晶度
Table 1 Lattice parameters, volume, and crystallinity of MnHAP and HAP
Sample | a-axis/Å | c-axis/Å | Volume/Å3 | Crytallinity/% |
---|---|---|---|---|
HAP | 9.41129 | 6.88743 | 528.31 | 61.77 |
MnHAP1 | 9.41083 | 6.88255 | 528.78 | 62.92 |
MnHAP5 | 9.40699 | 6.88027 | 527.74 | 61.72 |
MnHAP10 | 9.40415 | 6.87068 | 527.4 | 55.98 |
MnHAP20 | 9.40065 | 6.86074 | 527.11 | 50.36 |
图3 MnHAP10的Mn元素价态(a)、MnHAP光吸收(b)、MnHAP10光热转换效率(c)、MnHAP单纯抗菌作用(d~e)和MnHAP10光热抗菌作用(f)
Fig. 3 Mn element valence in MnHAP10 (a), photoabsorption of MnHAP (b), photothermal conversion efficiency of MnHAP10 (c), pure antibacterial effect MnHAP (d-e) and photothermal antibacterial MnHAP10 (f)
图4 MnHAP的比表面积与孔结构(a)、Zeta电位(b)与蛋白质吸附量(c)
Fig. 4 Specific surface area and pore structure (a), Zeta potential (b) and protein adsorption amount (c) of MnHAP
图5 MnHAP的细胞相容性(a)、成骨前期特征酶活性(b)以及特征蛋白和成骨相关基因表达(c~h)
Fig. 5 Cell compatibility (a), osteogenic marker (ALP/ARS) (b), and gene expression of protein marker and osteogenesis-related genes (c-h) of MnHAP
[1] |
WAN Y, FANG J, WANG Y, et al. Antibacterial zeolite imidazole frameworks with manganese doping for immunomodulation to accelerate infected wound healing. Advanced Healthcare Materials, 2021, 10(22): 2101515.
DOI URL |
[2] |
SIMON A T, DUTTA D, CHATTOPADHYAY A, et al. Copper nanocluster-doped luminescent hydroxyapatite nanoparticles for antibacterial and antibiofilm applications. ACS Omega, 2019, 4(3): 4697.
DOI PMID |
[3] |
LV Y, CHEN Y, ZHENG Y, et al. Evaluation of the antibacterial properties and in-vitro cell compatibilities of doped copper oxide/hydroxyapatite composites. Colloids Surface B Biointerfaces, 2022, 209(2): 112194.
DOI URL |
[4] |
CHLALA D, GIRAUDON J M, LABAKI M, et al. Formaldehyde total oxidation on manganese-doped hydroxyapatite: the effect of Mn content. Catalysts, 2020, 10(12): 1422.
DOI URL |
[5] |
ROSTICHER C, VIANA B, MALDINEY T, et al. Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging. Journal of Luminescence, 2016, 170: 460.
DOI URL |
[6] |
KANDORI K, MURATA R, YAMAGUCHI Y, et al. Protein adsorption behaviors onto Mn(II)-doped calcium hydroxyapatite particles with different morphologies. Colloids Surface B Biointerfaces, 2018, 167: 36.
DOI URL |
[7] |
JIN J, YANG L, CHEN F, et al. Drug delivery system based on nanobubbles. Interdisciplinary Materials, 2022, 1(4): 471.
DOI URL |
[8] | TURK S, ALTINSOY I, EFE G C, et al. Biomimetic synthesis of Ag, Zn or Co doped HA and coating of Ag, Zn or Co doped HA/fMWCNT composite on functionalized Ti. Materials Science & Engineering C-Materials for Biological Application, 2019, 99: 986. |
[9] |
IBRAHIM M, LABAKI M, NUNS N, et al. Cu-Mn hydroxyapatite materials for toluene total oxidation. ChemCatChem, 2019, 12(2): 550.
DOI URL |
[10] |
VAN H N, HOAN B T, NGUYEN K T, et al. Controlling blue and red light emissions from europium (Eu2+)/manganese (Mn2+)- codoped beta-tricalcium phosphate [β-Ca3(PO4)2 (TCP)] phosphors. Journal of Electronic Materials, 2018, 47(5): 2964.
DOI |
[11] |
ATES T, DOROZHKIN S V, KAYGILI O, et al. The effects of Mn and/or Ni dopants on the in vitro/in vivo performance, structural and magnetic properties of β-tricalcium phosphate bioceramics. Ceramics International, 2019, 45(17): 22752.
DOI URL |
[12] |
WANG M, LI M, WANG Y, et al. Efficient antibacterial activity of hydroxyapatite through ROS generation motivated by trace Mn(Ⅲ) coupled H vacancies. Journal of Materials Chemistry B, 2021, 9(15): 3401.
DOI URL |
[13] |
BHATTACHARJEE A, HASSAN R, GUPTA A, et al. Effect of Zn and Co doping on antibacterial efficacy and cytocompatibility of spark plasma sintered hydroxyapatite. Journal of the American Ceramic Society, 2020, 103(8): 4090.
DOI URL |
[14] | MUTHUSAMY S, MAHENDIRAN B, SAMPATH S, et al. Hydroxyapatite nanophases augmented with selenium and manganese ions for bone regeneration: physiochemical, microstructural and biological characterization. Materials Science & Engineering C-Materials for Biological Application, 2021, 126: 112149. |
[15] |
RAVICHANDRAN K, SATHISH P, MURALIDHARAN B, et al. Influence of a novel triple doping (Ag+Mn+F) on the magnetic and antibacterial properties of ZnO nanopowders. Ceramics International, 2016, 42(2): 2349.
DOI URL |
[16] |
LALA S, GHOSH M, DAS P K, et al. Mechanical preparation of nanocrystalline biocompatible single-phase Mn-doped A-type carbonated hydroxyapatite (A-cHAp): effect of Mn doping on microstructure. Dalton Transactions, 2015, 44(46): 20087.
DOI URL |
[17] | LIN Z, CAO Y, ZOU J, et al. Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement. Materials Science & Engineering C-Materials for Biological Application, 2020, 114: 111032. |
[18] |
BEHERA D R, NAYAK P, RAUTRAY T R. Phosphatidylethanolamine impregnated Zn-HA coated on titanium for enhanced bone growth with antibacterial properties. Journal of King Saud University - Science, 2020, 32(1): 848.
DOI URL |
[19] |
JACOBS A, RENAUDIN G, FORESTIER C, et al. Biological properties of copper-doped biomaterials for orthopedic applications: a review of antibacterial, angiogenic and osteogenic aspects. Acta Biomaterialia, 2020, 117: 21.
DOI PMID |
[20] |
LUO H, XIE J, XIONG L, et al. Engineering photoluminescent and magnetic lamellar hydroxyapatite by facile one-step Se/Gd dual-doping. Journal of Materials Chemistry B, 2018, 6(21): 3515.
DOI PMID |
[21] |
VAN H N, TAM P D, KIEN N D T, et al. Enhancing the luminescence of Eu3+/Eu2+ ion-doped hydroxyapatite by fluoridation and thermal annealing. Luminescence, 2017, 32(5): 817.
DOI URL |
[22] |
SINUSAITE L, POPOV A, RAUDONYTE-SVIRBUTAVICIENE E, et al. Effect of Mn doping on hydrolysis of low-temperature synthesized metastable alpha-tricalcium phosphate. Ceramics International, 2021, 47(9): 12078.
DOI URL |
[23] |
CHLALA D, GRIBOVAL-CONSTANT A, NUNS N, et al. Effect of Mn loading onto hydroxyapatite supported Mn catalysts for toluene removal: contribution of PCA assisted ToF-SIMS. Catalysis Today, 2018, 307: 41.
DOI URL |
[24] |
DUAN K, WENG J, YANG A, et al. Hydrothermal preparation and characterization of Zn, Si, Mg, Fe doped hydroxyapatite. Journal of Inorganic Materials, 2021, 36(10): 1091.
DOI URL |
[25] |
ZHOU Q, DOLGOV L, SRIVASTAVA A M, et al. Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review. Journal of Materials Chemistry C, 2018, 6(11): 2652.
DOI URL |
[26] |
DING B, ZHENG P, MA P, et al. Manganese oxide nanomaterials: synthesis, properties, and theranostic applications. Advanced Materials, 2020, 32(10): 1905823.
DOI URL |
[27] |
CHEN Z, LI Z, LI C, et al. Manganese-containing polydopamine nanoparticles as theranostic agents for magnetic resonance imaging and photothermal/chemodynamic combined ferroptosis therapy treating gastric cancer. Drug Delivery, 2022, 29(1): 1201.
DOI PMID |
[28] |
HE T, JIANG C, HE J, et al. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex- imaging-guided NIR-II photothermal-chemodynamic therapy. Advanced Materials, 2021, 33(13): 2008540.
DOI URL |
[29] |
TORRES P M, VIEIRA S I, CERQUEIRA A R, et al. Effects of Mn- doping on the structure and biological properties of beta-tricalcium phosphate. Journal of Inorganic Biochemistry, 2014, 136: 57.
DOI URL |
[30] |
TAO Q, HE G, YE S, et al. Mn doped Prussian blue nanoparticles for T1/T2 MR imaging, PA imaging and Fenton reaction enhanced mild temperature photothermal therapy of tumor. Journal of Nanobiotechnology, 2022, 20(1): 18.
DOI |
[31] | SPRIO S, PRETI L, MONTESI M, et al. Surface phenomena enhancing the antibacterial and osteogenic ability of nanocrystalline hydroxyapatite, activated by multiple-ion doping. ACS Biomaterials Science & Engineering, 2019, 5(11): 5947. |
[32] |
YANG C, REN Q, LIU X, et al. Porous agarose/Gd-hydroxyapatite composite bone fillers with promoted osteogenesis and antibacterial activity. Ceramics International, 2022, 48(7): 9413.
DOI URL |
[1] | 巴坤, 王建禄, 韩美康. MXene的红外特性及其应用研究展望[J]. 无机材料学报, 2024, 39(2): 162-170. |
[2] | 张志民, 葛敏, 林翰, 施剑林. 新型磁电催化纳米粒子的活性氮释放与抗菌性能研究[J]. 无机材料学报, 2024, 39(10): 1114-1124. |
[3] | 张淑敏, 奚晓雯, 孙磊, 孙平, 王德强, 魏杰. 基于声动力和类酶活性的铌基涂层: 抗菌及促进细胞增殖与分化[J]. 无机材料学报, 2024, 39(10): 1125-1134. |
[4] | 王艳莉, 钱心怡, 沈春银, 詹亮. 石墨烯基介孔锰铈氧化物催化剂: 制备和低温催化还原NO[J]. 无机材料学报, 2024, 39(1): 81-89. |
[5] | 孟波, 肖刚, 王秀丽, 涂江平, 谷长栋. 离子热合成锰基氧化物及其可逆储热性能[J]. 无机材料学报, 2023, 38(7): 793-799. |
[6] | 吴锐, 张敏慧, 金成韵, 林健, 王德平. 光热核壳TiN@硼硅酸盐生物玻璃纳米颗粒的降解和矿化性能[J]. 无机材料学报, 2023, 38(6): 708-716. |
[7] | 谢家晔, 李力文, 朱强. 三种临床盖髓剂的抗菌性及生物相容性对比研究[J]. 无机材料学报, 2023, 38(12): 1449-1456. |
[8] | 杜佳恒, 范鑫丽, 肖东琴, 尹一然, 李忠, 贺葵, 段可. 电泳沉积制备微弧氧化钛表面氧化镁涂层及其生物学性能[J]. 无机材料学报, 2023, 38(12): 1441-1448. |
[9] | 孙晨, 赵昆峰, 易志国. 甲烷完全催化氧化研究进展[J]. 无机材料学报, 2023, 38(11): 1245-1256. |
[10] | 刘妍, 张宇帆, 王茜蔓, 李婷, 马文婷, 杨富巍, 陈靓, 赵东月, 严小琴. 基于羟基磷灰石材料的风化脆弱骨质文物加固保护研究[J]. 无机材料学报, 2023, 38(11): 1345-1354. |
[11] | 吴雪彤, 张若飞, 阎锡蕴, 范克龙. 纳米酶: 一种抗微生物感染新方法[J]. 无机材料学报, 2023, 38(1): 43-54. |
[12] | 盛丽丽, 常江. 光/磁热Fe2SiO4/Fe3O4双相生物陶瓷及其复合电纺丝膜制备及抗菌性能研究[J]. 无机材料学报, 2022, 37(9): 983-990. |
[13] | 施吉翔, 翟东, 朱敏, 朱钰方. 生物活性玻璃-二氧化锰复合支架的制备与表征[J]. 无机材料学报, 2022, 37(4): 427-435. |
[14] | 陈铖, 丁晶鑫, 王会, 王德平. 掺钕介孔硼硅酸盐生物活性玻璃陶瓷骨水泥的制备与性能表征[J]. 无机材料学报, 2022, 37(11): 1245-1258. |
[15] | 池哲人, 张辽, 郭志前, 李永生, 牛德超. 氧化硅基杂化胶束负载Flav7光热剂的合成与性能研究[J]. 无机材料学报, 2022, 37(11): 1236-1244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||