无机材料学报 ›› 2021, Vol. 36 ›› Issue (7): 745-752.DOI: 10.15541/jim20200484 CSTR: 32189.14.10.15541/jim20200484
林子扬1(), 常宇辰2, 吴章凡1, 包荣3, 林文庆3, 王德平1(
)
收稿日期:
2020-08-20
修回日期:
2020-09-18
出版日期:
2021-07-20
网络出版日期:
2020-10-10
通讯作者:
王德平, 教授. E-mail:wdpshk@tongji.edu.cn
作者简介:
林子扬(1996-), 男, 硕士研究生. E-mail:lzyyymx@163.com
基金资助:
LIN Ziyang1(), CHANG Yuchen2, WU Zhangfan1, BAO Rong3, LIN Wenqing3, WANG Deping1(
)
Received:
2020-08-20
Revised:
2020-09-18
Published:
2021-07-20
Online:
2020-10-10
Contact:
WANG Deping, professor. E-mail:wdpshk@tongji.edu.cn
About author:
LIN Ziyang(1996-), male, Master candidate. E-mail:lzyyymx@163.com
Supported by:
摘要:
硼硅酸盐生物活性玻璃基(Borosilicate bioactive glass-based, BBG)骨水泥由于其优异的生物活性和生物降解性, 在治疗骨质疏松性骨折以及骨肿瘤、骨创伤、骨髓炎等疾病方面具有重要的应用前景, 受到人们的广泛关注。为进一步了解氨基酸对其植入生物体内后的矿化影响, 本研究在常规的SBF溶液中添加了不同种类及浓度的氨基酸物质, 重点研究对植入体表面形貌的影响。同时为在矿化过程中同步形成白磷钙矿(Whitlockite, WH)和羟基磷灰石(hydroxyapatite, HA), 调整了SBF溶液的温度以及酸碱度和Mg2+浓度, 研究了不同SBF溶液中BBG骨水泥表面形成的矿化产物。研究结果表明, 不同的氨基酸及浓度的变化对矿化产物的影响有较大差异, 天冬氨酸和赖氨酸的浓度变化影响矿物的长径比, 而甘氨酸对矿物形貌的影响较小。将硼硅酸盐生物活性玻璃压片放置在70 ℃下的高Mg2+浓度的酸性(pH=3.5)SBF溶液中浸泡一定时间后, 能够获得HA/WH的复相矿物。
中图分类号:
林子扬, 常宇辰, 吴章凡, 包荣, 林文庆, 王德平. 不同模拟体液对硼硅酸盐生物活性玻璃基骨水泥矿化性能的影响[J]. 无机材料学报, 2021, 36(7): 745-752.
LIN Ziyang, CHANG Yuchen, WU Zhangfan, BAO Rong, LIN Wenqing, WANG Deping. Different Simulated Body Fluid on Mineralization of Borosilicate Bioactive Glass-based Bone Cement[J]. Journal of Inorganic Materials, 2021, 36(7): 745-752.
Ion | Na+ | K+ | Mg2+ | Ca2+ | Cl- | HCO- 3 | HPO2- 4 | SO2- 4 | pH |
---|---|---|---|---|---|---|---|---|---|
Blood plasma | 142.0 | 5.0 | 1.5 | 2.5 | 103.0 | 27.0 | 1.0 | 0.5 | 7.2-7.4 |
SBF | 142.0 | 5.0 | 1.5 | 2.5 | 147.8 | 4.2 | 1.0 | 0.5 | 7.4 |
1.5SBF | 213.0 | 7.5 | 2.25 | 3.75 | 221.7 | 6.3 | 1.5 | 0.75 | 7.4 |
2Mg-1.5SBF | 213.0 | 7.5 | 4.5 | 3.75 | 226.2 | 6.3 | 1.5 | 0.75 | 3.5 |
表1 不同SBF溶液的组成/(mmol·L-1)
Table 1 Composition of different SBFs/(mmol·L-1)
Ion | Na+ | K+ | Mg2+ | Ca2+ | Cl- | HCO- 3 | HPO2- 4 | SO2- 4 | pH |
---|---|---|---|---|---|---|---|---|---|
Blood plasma | 142.0 | 5.0 | 1.5 | 2.5 | 103.0 | 27.0 | 1.0 | 0.5 | 7.2-7.4 |
SBF | 142.0 | 5.0 | 1.5 | 2.5 | 147.8 | 4.2 | 1.0 | 0.5 | 7.4 |
1.5SBF | 213.0 | 7.5 | 2.25 | 3.75 | 221.7 | 6.3 | 1.5 | 0.75 | 7.4 |
2Mg-1.5SBF | 213.0 | 7.5 | 4.5 | 3.75 | 226.2 | 6.3 | 1.5 | 0.75 | 3.5 |
图2 (a)天冬氨酸、(b)甘氨酸、(c)赖氨酸浓度为0.1 mol/L时和(d)对照组骨水泥矿化(1) 5、(2) 7和(3) 14 d后表面形貌
Fig. 2 Surface morphologies of BBG bone cements after being soaked in 1.5SBF containing 0.1 mol/L (a) aspartic acid, (b) glycine, (c) lysine, and (d) control group without amino acid for (1) 5, (2) 7 and (3) 14 d
图3 骨水泥在含有0.1 mol/L氨基酸的1.5SBF中浸泡(a) 5和(b)14 d后产物的XRD图谱
Fig. 3 XRD patterns of the products produced by soaking bone cements in 1.5SBF containing 0.1 mol/L amino acid for (a) 5 and (b) 14 d
图4 骨水泥在含有(a) 0.1和(b) 0.2 mol/L 氨基酸的1.5SBF中矿化过程的pH变化
Fig. 4 pH Changes of 1.5SBF containing (a) 0.1 and (b) 0.2 mol/L amino acid during the mineralization of bone cements
图5 (a)天冬氨酸、(b)甘氨酸、(c)赖氨酸浓度为0.2 mol/L时骨水泥矿化(1) 5、(2) 7和(3) 14 d后表面形貌
Fig. 5 Surface morphologies of BBG bone cements after being soaked in 1.5SBF containing 0.2 mol/L (a) aspartic acid, (b) glycine and (c) lysine for (1) 5, (2)7 and (3) 14 d
图8 BBG动态浸泡7 和10 d后产物的XRD图谱以及HA和WH的标准XRD图谱
Fig. 8 XRD patterns of BBG after dynamic soaking for 7 and 10 d against the standard XRD patterns of HA and WH
图9 矿化产物中(a, b) HA和(c, d) WH的(a, c) TEM照片和 (b, d)选区电子衍射花样
Fig. 9 (a, c) TEM images and (b, d) selected area electron diffraction patterns of mineralized (a, b) HA and (c, d) WH
[1] |
KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006,27(15):2907-2915.
DOI URL |
[2] | YILMAZ B, PAZARCEVIREN A E, TEZCANER A, et al. Historical development of simulated body fluids used in biomedical applications: A review. Microchemical Journal, 2020,155:104713. |
[3] |
PALAZZO B, WALSH D, IAFISCO M, et al. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals. Acta Biomaterialia, 2009,5(4):1241-1252.
DOI URL |
[4] |
HUANG S, ZHOU K, LI Z. Inhibition mechanism of aspartic acid on crystal growth of hydroxyapatite. Transactions of Nonferrous Metals Society of China, 2007,17(3):612-616.
DOI URL |
[5] |
MARTINS M L, IESSI I L, QUINTINO M P, et al. Glucose is an active chemical agent on degradation of hydroxyapatite nanostructure. Materials Chemistry and Physics, 2020,240:122166.
DOI URL |
[6] |
LI Z C, REN Q, CUI J Y, et al. Comparing the efficacy of hydroxyapatite nucleation regulated by amino acids, poly-amino acids and an amelogenin-derived peptide. CrystEngComm, 2020,22:3814-3823.
DOI URL |
[7] |
WU Y Y, YE S, YAO A H, et al. Effect of gas-foaming porogen- NaHCO3 and citric acid on the properties of injectable macroporous borate bioactive glass cement. Journal of Inorganic Materials, 2017,32(7):777-784.
DOI URL |
[8] |
XIE X, PANG L B, YAO A H, et al. Nanocement produced from borosilicate bioactive glass nanoparticles composited with alginate. Australian Journal of Chemistry, 2019,72(5):354-361.
DOI URL |
[9] |
CUI X, ZHAO C J, GU Y F, et al. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone. Journal of Materials Science-Materials in Medicine, 2014,25(3):733-745.
DOI URL |
[10] |
JANG H L, JIN K, LEE J, et al. Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano, 2014,8(1):634-641.
DOI URL |
[11] |
LUNA-DOMINGUEZ J H, TELLEZ-JIMENEZ H, HERNANDEZ- COCOLETZI H, et al. Development and in vivo response of hydroxyapatite/whitlockite from chicken bones as bone substitute using a chitosan membrane for guided bone regeneration. Ceramics International, 2018,44(18):22583-22591.
DOI URL |
[12] |
KIM H D, JANG H L, AHN H Y, et al. Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials, 2017,112:31-43.
DOI URL |
[13] |
CHANG Y, ZHAO R, WANG H, et al. A novel injectable whitlockite-containing borosilicate bioactive glass cement for bone repair. Journal of Non-Crystalline Solids, 2020, 547: 120291-1-11.
DOI URL |
[14] |
YAO A H, WANG D P, HUANG W H, et al. In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. Journal of the American Ceramic Society, 2007,90(1):303-306.
DOI URL |
[15] | MARQUES M R C, LOEBENBERG R, ALMUKAINZI M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technologies, 2011,18(3):15-28. |
[16] |
ZHANG J T, LIU W Z, SCHNITZLER V, et al. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomaterialia, 2014,10(3):1035-1049.
DOI URL |
[17] | ANDERSEN T, STRAND B L, FORMO K, et al. Alginates as biomaterials in tissue engineering. Carbohydrate Chemistry, 2011,37:227-258. |
[18] |
JANG H L, LEE H K, JIN K, et al. Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. Journal of Materials Chemistry B, 2015,3(7):1342-1349.
DOI URL |
[19] |
IKAWA N, KIMURA T, OUMI Y, et al. Amino acid containing amorphous calcium phosphates and the rapid transformation into apatite. Journal of Materials Chemistry, 2009,19(28):4906-4913.
DOI URL |
[20] |
ZHANG G D, CHEN J D, YANG S, et al. Preparation of amino- acid-regulated hydroxyapatite particles by hydrothermal method. Materials Letters, 2011,65(3):572-574.
DOI URL |
[21] | 周杨. 羟基磷灰石微纳结构的制备及应用研究. 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2018. |
[22] | GUO Y, LI Y, LI L. Mechanism of nano hydroxyapatite crystallization under hydrothermal conditions. Journal of Civil Aviation University of China, 2007,25(4):26-30. |
[23] | WANG Y, WU J, RUAN Y, et al. Influence of aspartic acid concentration on shape of HAP. Technology and Development of Chemical Industry, 2017,46(8):21-23, 53. |
[24] |
WANG C F, JEONG K J, PARK H J, et al. Synthesis and formation mechanism of bone mineral, whitlockite nanocrystals in tri-solvent system. Journal of Colloid and Interface Science, 2020,569:1-11.
DOI URL |
[25] |
JANG H L, BIN ZHENG G, PARK J, et al. In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and beta-tricalcium phosphate. Advanced Healthcare Materials, 2016,5(1):128-136.
DOI URL |
[26] |
CHENG H, CHABOK R, GUAN X F, et al. Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomaterialia, 2018,69:342-351.
DOI URL |
[1] | 李承瑜, 丁自友, 韩颖超. 锰掺杂纳米羟基磷灰石的体外抗菌-促成骨性能研究[J]. 无机材料学报, 2024, 39(3): 313-320. |
[2] | 丁统顺, 丰平, 孙学文, 单沪生, 李琪, 宋健. Fmoc-FF-OH钝化钙钛矿薄膜及其太阳能电池性能研究[J]. 无机材料学报, 2023, 38(9): 1076-1082. |
[3] | 刘妍, 张宇帆, 王茜蔓, 李婷, 马文婷, 杨富巍, 陈靓, 赵东月, 严小琴. 基于羟基磷灰石材料的风化脆弱骨质文物加固保护研究[J]. 无机材料学报, 2023, 38(11): 1345-1354. |
[4] | 董淑蕊, 赵笛, 赵静, 金万勤. 离子化氨基酸对氧化石墨烯膜渗透汽化过程中水选择性渗透的影响[J]. 无机材料学报, 2022, 37(4): 387-394. |
[5] | 陈亚玲, 舒松, 王劭鑫, 李建军. Mn-HAP基低温SCR催化剂的制备及抗硫中毒性能[J]. 无机材料学报, 2022, 37(10): 1065-1072. |
[6] | 朱雨桐, 谭佩洁, 林海, 朱向东, 张兴栋. 可注射透明质酸/羟基磷灰石复合材料: 制备、理化性能和细胞相容性[J]. 无机材料学报, 2021, 36(9): 981-990. |
[7] | 吴永豪, 李向锋, 朱向东, 张兴栋. 高强度羟基磷灰石纳米陶瓷的构建及其促成骨细胞活性研究[J]. 无机材料学报, 2021, 36(5): 552-560. |
[8] | 宋可可, 黄浩, 鲁梦婕, 杨安春, 翁杰, 段可. 水热制备锌、硅、镁、铁等元素掺杂羟基磷灰石及其表征[J]. 无机材料学报, 2021, 36(10): 1091-1096. |
[9] | 邵悦婷, 朱英杰, 董丽颖, 蔡安勇. 羟基磷灰石超长纳米线/植物纤维纳米复合“宣纸”及其防霉性能[J]. 无机材料学报, 2021, 36(1): 107-112. |
[10] | 孙团伟,朱英杰. 一步溶剂热法合成锶掺杂羟基磷灰石超长纳米线[J]. 无机材料学报, 2020, 35(6): 724-728. |
[11] | 刘子阳, 耿振, 李朝阳. 牡蛎壳为原料制备医用CaCO3/HA复合生物材料[J]. 无机材料学报, 2020, 35(5): 601-607. |
[12] | 代钊,王铭,王双,李静,陈翔,汪大林,祝迎春. 氧化锆基微量元素共掺杂羟基磷灰石增韧涂层研究[J]. 无机材料学报, 2020, 35(2): 179-186. |
[13] | 付亚康,翁杰,刘耀文,张科宏. 钛网表面含hBMP-2的复合涂层制备及hBMP-2的释放研究[J]. 无机材料学报, 2020, 35(2): 173-178. |
[14] | 周子航, 王群, 葛翔, 李朝阳. 掺锶羟基磷灰石纳米颗粒的合成、表征及模拟研究[J]. 无机材料学报, 2020, 35(11): 1283-1289. |
[15] | 肖文谦,张静,李克江,邹新宇,蔡昱东,李波,刘雪,廖晓玲. 荔枝状CaCO3@HA/Fe3O4磁性介孔多级微球的制备[J]. 无机材料学报, 2019, 34(9): 925-932. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||