Journal of Inorganic Materials
Previous Articles Next Articles
WANG Yuhe1,2, LUO Yixiu1, Guo Huiming3, ZHANG Guangheng4, ZHANG Siyan4, SUN Luchao1, WANG Jiemin1, WANG Jingyang1
Received:
2025-06-27
Revised:
2025-08-22
About author:
WANG Yuhe (2001–), male, Master candidate. E-mail: yhwang23s@imr.ac.cn
Supported by:
CLC Number:
WANG Yuhe, LUO Yixiu, Guo Huiming, ZHANG Guangheng, ZHANG Siyan, SUN Luchao, WANG Jiemin, WANG Jingyang. First-Principles Investigation of Elastic and Thermophysical Properties of High-Entropy Rare-Earth Oxide Thermal Barrier Coating Materials[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250272.
[1] LEE K N, FOX D S, BANSAL N P.Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics.Journal of the European Ceramic Society, 2005, 25(10): 1705. [2] MARTIN D, BENNETT C, HUSSAIN T.A review on environmental barrier coatings: history, current state of the art and future developments.Journal of the European Ceramic Society, 2021, 41(3): 1747. [3] DUAN Z, DENG L, LU K, et al. Thermal cycle and water oxygen performance of multi-layered Y3Al5O12/Yb2SiO5/Yb2Si2O7 thermal/envir- onmental barrier coatings.Ceramics International, 2024, 50(9): 16309. [4] ZINKEVICH M.Thermodynamics of rare earth sesquioxides.Progress in Materials Science, 2007, 52(4): 597. [5] ZHANG G H, ZHANG J, WANG J Y.Synthesis and characterization of ytterbium oxide: a novel CMAS-resistant environmental barrier coating material.Journal of the American Ceramic Society, 2023, 106(1): 621. [6] ZHANG G H, SHI J Y, ZHANG J,et al. Investigation on crystallization behavior between (ScxYb1-x)O1.5 and CMAS: A new insight in the effect of Sc substitution. Journal of Advanced Ceramics, 2024, 13(6): 789. [7] WRIGHT A J, WANG Q Y, HUANG C Y,et al. From high-entropy ceramics to compositionally-complex ceramics: a case study of fluorite oxides. Journal of the European Ceramic Society, 2020, 40(5): 2120. [8] SUN L C, REN X M, DU T F, et al. High Entropy engineering: new strategy for the critical property optimizations of rare earth silicates. Journal of Inorganic Materials, 2021, 36(4): 339. [9] WANG Y D, GUO Q, ZHOU Q J,et al. Research progress in high temperature functional coatings for advanced aeroengines. Journal of Aeronautical Materials, 2024, 44(5): 48. [10] PAN W, LIU G H,WANG X L, et al. Review of the development of thermal barrier coating materials and technologies. Thermal Spray Technology,2025(1):1. [11] LUO X W, XU C H, DUAN S S,et al. Research progress of high-entropy thermal barrier coatings ceramic materials. Aeronautical Manufacturing Technology, 2022, 65(3): 82. [12] SUN Y N, XIANG H M, DAI F Z,et al. Preparation and properties of CMAS resistant bixbyite structured high-entropy oxides RE2O3(RE= Sm, Eu, Er, Lu, Y, and Yb): promising environmental barrier coating materials for Al2O3f/Al2O3 composites. Journal of Advanced Ceramics, 2021, 10: 596. [13] ARDREY K D, RIDLEY M J, Wang K,et al. Opportunities for novel refractory alloy thermal/environmental barrier coatings using multicomponent rare earth oxides. Scripta Materialia, 2024, 251: 116206. [14] PING X Y, MENG B, YU X H,et al. Structural, mechanical and thermal properties of cubic bixbyite-structured high-entropy oxides. Chemical Engineering Journal, 2023, 464: 142649. [15] MENG H, YU R, TANG Z,et al. Formation ability descriptors for high-entropy diborides established through high-throughput experiments and machine learning. Acta Materialia, 2023, 256: 119132. [16] GYORFFY B L.Coherent-potential approximation for a nonoverlap muffin-tin-potential model of random substitutional alloys.Physical Review B, 1972, 5(6): 2382. [17] BELLAICHE L, VANDERBILT D.Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites.Physical Review B, 2000, 61(12): 7877. [18] VAN A, TIWARY P, DE M,et al. Efficient stochastic generation of special quasirandom structures. Calphad, 2013, 42: 13. [19] REN X M, TIAN Z L, ZHANG J,et al. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: a perspective multifunctional thermal and environmental barrier coating material. Scripta Materialia, 2019, 168: 47. [20] SUN L C, LUO Y X, TIAN Z L, et al. High temperature corrosion of (Er1/4Tm1/4Yb1/4Lu1/4)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium-aluminosilicate (CMAS). Corrosion Science, 2020, 175: 108881. [21] KRESSE G, FURTHMULLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Physical review B, 1996, 54(16): 11169. [22] BLOCHL P E.Projector augmented-wave method.Physical review B, 1994, 50(24): 17953. [23] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple.Physical Review Letters, 1997, 77(18): 3865. [24] MONKHORST H J, PACK J D.Special points for Brillouin-zone integrations.Physical review B, 1976, 13(12): 5188. [25] LUO Y X, WANG J, SUN L C,et al. Phononic origin of the infrared dielectric properties of RE2O3(RE= Y, Gd, Ho, Lu) compounds. Modelling and Simulation in Materials Science and Engineering, 2024, 32(5): 055009. [26] VOIG W.Lehrbuch der Kristallphysik 962. Leipzig: Teubner, 1928. [27] REUSS A.Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle.Journal of Applied Mathematics and Mechanics, 1929, 9(1): 49. [28] HILL R.The elastic behaviour of a crystalline aggregate.Proceedings of the Physical Society. Section A, 1952, 65(5): 349. [29] LUO Y X, WANG J M, LI J N,et al. Theoretical study on crystal structures, elastic stiffness, and intrinsic thermal conductivities of β-, γ-, and δ-Y2Si2O7. Journal of Materials Research, 2015, 30(4): 493. [30] NYE J F.Physical properties of crystals: their representation by tensors and matrices. Oxford: Oxford university press, 1985. [31] KITTEL C, MCEUEN P.Introduction to solid state physics. New York: John Wiley & Sons, 2018. [32] LUO Y X, SUN L C, WANG J M,et al. Material-genome perspective towards tunable thermal expansion of rare-earth di-silicates. Journal of the European Ceramic Society, 2018, 38(10): 3547. [33] CLARKE D R.Materials selection guidelines for low thermal conductivity thermal barrier coatings.Surface and Coatings Technology, 2003, 163: 67. [34] MORELLI D T, SLACK G A.High lattice thermal conductivity solids. New York: Springer New York, 2006: 37-68. [35] ANDERSON O L.A simplified method for calculating the Debye temperature from elastic constants.Journal of Physics and Chemistry of Solids, 1963, 24(7): 909. [36] SANDITOV B D, TSYDYPOV S B, SANDITOV D S.Relation between the Grüneisen constant and Poisson's ratio of vitreous systems.Acoustical Physics, 2007, 53: 594. [37] BRULSR J.The thermal conductivity of magnesium silicon nitride, MgSiN2, ceramics and related materials. Eindhoven: PhD in Chemical Engineering and Chemistry from Eindhoven University of Technology, 2000. [38] LUO Y X, WANG JM J, LI Y R,et al. Giant phonon anharmonicity and anomalous pressure dependence of lattice thermal conductivity in Y2Si2O7 silicate. Scientific Reports, 2016, 6: 29801. [39] WEI G, ZUO Y, LUO F,et al. Investigation of mechanical and thermodynamic properties of La2Zr2O7 pyrochlore. International Journal of Energy Research, 2022, 46(2): 2011. [40] LUO F, LI B, GUO Z, et al. Ab initio calculation of mechanical and thermodynamic properties of Gd2Zr2O7 pyrochlore. Materials Chemistry and Physics, 2020, 243: 122565. [41] CAO X Q, VASSEN R, STOVER D.Ceramic materials for thermal barrier coatings.Journal of the European Ceramic Society, 2004, 24(1): 1. [42] TIAN Z L, ZHENG L Y, WANG J M,et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5(RE= Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. Journal of the European Ceramic Society, 2016, 36(1): 189. [43] TIAN Z L, Zheng L Y, LI Z, et al. Exploration of the low thermal conductivities of γ-Y2Si2O7, β-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 as novel environmental barrier coating candidates. Journal of the European Ceramic Society, 2016, 36(11): 2813. |
[1] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[2] | JIN Yuxiang, SONG Erhong, ZHU Yongfu. First-principles Investigation of Single 3d Transition Metals Doping Graphene Vacancies for CO2 Electroreduction [J]. Journal of Inorganic Materials, 2024, 39(7): 845-852. |
[3] | WANG Weihua, ZHANG Leining, DING Feng, DAI Bing, HAN Jiecai, ZHU Jiaqi, JIA Yi, Yang Yu. Heteroepitaxial Diamond Nucleation and Growth on Iridium: First-principle Calculation [J]. Journal of Inorganic Materials, 2024, 39(4): 416-422. |
[4] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[5] | ZHOU Jingyu, LI Xingyu, ZHAO Xiaolin, WANG Youwei, SONG Erhong, LIU Jianjun. Rate and Cycling Performance of Ti and Cu Doped β-NaMnO2 as Cathode of Sodium-ion Battery [J]. Journal of Inorganic Materials, 2024, 39(12): 1404-1412. |
[6] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[7] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[8] | WU Xiaowei, ZHANG Han, ZENG Biao, MING Chen, SUN Yiyang. Comparison of Hybrid Functionals HSE and PBE0 in Calculating the Defect Properties of CsPbI3 [J]. Journal of Inorganic Materials, 2023, 38(9): 1110-1116. |
[9] | ZHANG Shouchao, CHEN Hongyu, LIU Hongfei, YANG Yu, LI Xin, LIU Defeng. High Temperature Recovery of Neutron Irradiation-induced Swelling and Optical Property of 6H-SiC [J]. Journal of Inorganic Materials, 2023, 38(6): 678-686. |
[10] | YANG Yingkang, SHAO Yiqing, LI Bailiang, LÜ Zhiwei, WANG Lulu, WANG Liangjun, CAO Xun, WU Yuning, HUANG Rong, YANG Chang. Enhanced Band-edge Luminescence of CuI Thin Film by Cl-doping [J]. Journal of Inorganic Materials, 2023, 38(6): 687-692. |
[11] | AN Wenran, HUANG Jingqi, LU Xiangrong, JIANG Jianing, DENG Longhui, CAO Xueqiang. Effect of Heat-treatment Temperature on Thermal and Mechanical Properties of LaMgAl11O19 Coating [J]. Journal of Inorganic Materials, 2022, 37(9): 925-932. |
[12] | WEN Zhiqin, HUANG Binrong, LU Taoyi, ZOU Zhengguang. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787-794. |
[13] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[14] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[15] | YUAN Gang, MA Xinguo, HE Hua, DENG Shuiquan, DUAN Wangyang, CHENG Zhengwang, ZOU Wei. Plane Strain on Band Structures and Photoelectric Properties of 2D Monolayer MoSi2N4 [J]. Journal of Inorganic Materials, 2022, 37(5): 527-533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||