Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (11): 1285-1292.DOI: 10.15541/jim20250098
• RESEARCH ARTICLE • Previous Articles Next Articles
XU Xiaoyu1(
), ZHOU Liyang2, FENG Xiaoying1, WANG Hui2, YAN Bin2, XU Jie1, GAO Feng1(
)
Received:2025-03-08
Revised:2025-04-13
Published:2025-11-20
Online:2025-06-10
Contact:
GAO Feng, professor. E-mail: gaofeng@nwpu.edu.cnAbout author:XU Xiaoyu (1998-), male, PhD candidate. E-mail: x2584186142@126.com
Supported by:CLC Number:
XU Xiaoyu, ZHOU Liyang, FENG Xiaoying, WANG Hui, YAN Bin, XU Jie, GAO Feng. Microstructure and Properties of PIN-PZN-PZ-PT Piezoelectric Ceramics Designed by MPB Linear Rules[J]. Journal of Inorganic Materials, 2025, 40(11): 1285-1292.
| Sample | s1 | s2 | s3 | x | Sample’s label |
|---|---|---|---|---|---|
| A | 0.3 | 0.6 | 0.1 | 0.205-0.285 | A205-A285 |
| B | 0.3 | 0.5 | 0.2 | 0.290-0.370 | B290-B370 |
| C | 0.3 | 0.4 | 0.3 | 0.285-0.365 | C285-C365 |
Table 1 Composition design of PIN-PZN-PZ-PT piezoelectric ceramics
| Sample | s1 | s2 | s3 | x | Sample’s label |
|---|---|---|---|---|---|
| A | 0.3 | 0.6 | 0.1 | 0.205-0.285 | A205-A285 |
| B | 0.3 | 0.5 | 0.2 | 0.290-0.370 | B290-B370 |
| C | 0.3 | 0.4 | 0.3 | 0.285-0.365 | C285-C365 |
Fig. 3 XRD peak fitting patterns of PIZZT ceramics at 2θ=43.5°-46.2° (a) A205-A285; (b) B290-B370; (c) C285-C365. Colorful figures are available on website
Fig. 5 Temperature dependent on dielectric properties and Curie temperature of PIZZT ceramics (a) A205-A285; (b) B290-B370; (c) C285-C365; (d) Curie temperatures of A, B and C. Colorful figures are available on website
| Sample | εr | TC/ ℃ | Pr/ (μC·cm-2) | Ec/ (kV·cm-1) | d33/ (pC·N-1) | kp |
|---|---|---|---|---|---|---|
| A205 | 1346 | 227 | 34.7 | 9.1 | 168 | 0.33 |
| A225 | 1588 | 232 | 35.1 | 9.7 | 303 | 0.36 |
| A245 | 2686 | 241 | 36.2 | 10.4 | 360 | 0.44 |
| A265 | 3146 | 253 | 34.1 | 12.2 | 425 | 0.50 |
| A285 | 2337 | 268 | 27.1 | 14.7 | 367 | 0.42 |
| B290 | 2118 | 273 | 33.1 | 11.7 | 360 | 0.46 |
| B310 | 2365 | 284 | 29.5 | 15.2 | 334 | 0.39 |
| B330 | 2311 | 279 | 28.4 | 16.4 | 295 | 0.33 |
| B350 | 1903 | 304 | 25.2 | 18.2 | 260 | 0.34 |
| B370 | 1400 | 308 | 19.4 | 19.1 | 243 | 0.29 |
| C285 | 1198 | 284 | 37.11 | 10.0 | 255 | 0.34 |
| C305 | 1758 | 299 | 37.14 | 10.1 | 270 | 0.38 |
| C325 | 1312 | 302 | 31.8 | 17.4 | 260 | 0.36 |
| C345 | 1281 | 303 | 26.59 | 19.9 | 255 | 0.33 |
| C365 | 1179 | 317 | 21.36 | 15.14 | 230 | 0.29 |
Table 2 Piezoelectric properties of PIZZT ceramics
| Sample | εr | TC/ ℃ | Pr/ (μC·cm-2) | Ec/ (kV·cm-1) | d33/ (pC·N-1) | kp |
|---|---|---|---|---|---|---|
| A205 | 1346 | 227 | 34.7 | 9.1 | 168 | 0.33 |
| A225 | 1588 | 232 | 35.1 | 9.7 | 303 | 0.36 |
| A245 | 2686 | 241 | 36.2 | 10.4 | 360 | 0.44 |
| A265 | 3146 | 253 | 34.1 | 12.2 | 425 | 0.50 |
| A285 | 2337 | 268 | 27.1 | 14.7 | 367 | 0.42 |
| B290 | 2118 | 273 | 33.1 | 11.7 | 360 | 0.46 |
| B310 | 2365 | 284 | 29.5 | 15.2 | 334 | 0.39 |
| B330 | 2311 | 279 | 28.4 | 16.4 | 295 | 0.33 |
| B350 | 1903 | 304 | 25.2 | 18.2 | 260 | 0.34 |
| B370 | 1400 | 308 | 19.4 | 19.1 | 243 | 0.29 |
| C285 | 1198 | 284 | 37.11 | 10.0 | 255 | 0.34 |
| C305 | 1758 | 299 | 37.14 | 10.1 | 270 | 0.38 |
| C325 | 1312 | 302 | 31.8 | 17.4 | 260 | 0.36 |
| C345 | 1281 | 303 | 26.59 | 19.9 | 255 | 0.33 |
| C365 | 1179 | 317 | 21.36 | 15.14 | 230 | 0.29 |
| Designation | TC/℃ | d33/(pC·N-1) | kp | εr | Ref. |
|---|---|---|---|---|---|
| PMN-PT | 159 | 663 | - | 5260 | [ |
| PMN-PIN-PT | 245 | 450 | 0.49 | 2970 | [ |
| PNN-PZ-PT | 115 | 986 | 0.693 | 9015 | [ |
| PNN-PH-PT | 110 | 970 | 0.65 | 6000 | [ |
| Sr-PMN-PT | 210 | 630 | 0.52 | 4000 | [ |
| Sm-PMN-PT | 89 | 1510 | - | 13000 | [ |
| PIN-PMN-PT | 245 | 450 | 0.49 | 2970 | [ |
| PZW-PMN-PZT | 150 | 450 | - | 3811 | [ |
| PZT-5A | 360 | 390 | 0.5 | 1750 | [ |
| PZT-5H | 193 | 590 | 0.64 | 3300 | [ |
| PMN-PZ-PT | 230 | 661 | 0.63 | 2441 | [ |
| PIN-PMN-PT | 219 | 505 | 0.62 | 2120 | [ |
| PIN-PSN-PT | 280 | 360 | - | - | [ |
| PIZZT | 253 | 425 | 0.50 | 3146 | This work |
Table 3 Comparison of lead-based piezoelectric ceramic properties
| Designation | TC/℃ | d33/(pC·N-1) | kp | εr | Ref. |
|---|---|---|---|---|---|
| PMN-PT | 159 | 663 | - | 5260 | [ |
| PMN-PIN-PT | 245 | 450 | 0.49 | 2970 | [ |
| PNN-PZ-PT | 115 | 986 | 0.693 | 9015 | [ |
| PNN-PH-PT | 110 | 970 | 0.65 | 6000 | [ |
| Sr-PMN-PT | 210 | 630 | 0.52 | 4000 | [ |
| Sm-PMN-PT | 89 | 1510 | - | 13000 | [ |
| PIN-PMN-PT | 245 | 450 | 0.49 | 2970 | [ |
| PZW-PMN-PZT | 150 | 450 | - | 3811 | [ |
| PZT-5A | 360 | 390 | 0.5 | 1750 | [ |
| PZT-5H | 193 | 590 | 0.64 | 3300 | [ |
| PMN-PZ-PT | 230 | 661 | 0.63 | 2441 | [ |
| PIN-PMN-PT | 219 | 505 | 0.62 | 2120 | [ |
| PIN-PSN-PT | 280 | 360 | - | - | [ |
| PIZZT | 253 | 425 | 0.50 | 3146 | This work |
| Sample classification | Sample | T/% | R/% | Sample classification | Sample | T/% | R/% |
|---|---|---|---|---|---|---|---|
| A | A205 | 0 | 100 | C | C285 | 32 | 68 |
| A225 | 33 | 67 | C305 | 42 | 58 | ||
| A245 | 48 | 52 | C325 | 53 | 47 | ||
| A265 | 67 | 33 | C345 | 57 | 43 | ||
| A285 | 81 | 19 | C365 | 86 | 14 | ||
| B | B290 | 53 | 47 | ||||
| B310 | 54 | 46 | |||||
| B330 | 56 | 44 | |||||
| B350 | 66 | 34 | |||||
| B370 | 83 | 17 |
Table S1 Rhombohedral and tetragonal phase content of A, B and C
| Sample classification | Sample | T/% | R/% | Sample classification | Sample | T/% | R/% |
|---|---|---|---|---|---|---|---|
| A | A205 | 0 | 100 | C | C285 | 32 | 68 |
| A225 | 33 | 67 | C305 | 42 | 58 | ||
| A245 | 48 | 52 | C325 | 53 | 47 | ||
| A265 | 67 | 33 | C345 | 57 | 43 | ||
| A285 | 81 | 19 | C365 | 86 | 14 | ||
| B | B290 | 53 | 47 | ||||
| B310 | 54 | 46 | |||||
| B330 | 56 | 44 | |||||
| B350 | 66 | 34 | |||||
| B370 | 83 | 17 |
| [1] | EITEL R E, RANDALL C A, SHROUT T R, et al. New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics. Journal of Applied Physics, 2001, 40(10): 5999. |
| [2] |
ZHANG S J, LEE S M, KIM D H, et al. Electromechanical properties of PMN-PZT piezoelectric single crystals near morphotropic phase boundary compositions. Journal of the American Ceramic Society, 2007, 90(12): 3859.
DOI URL |
| [3] |
LI F, ZHANG S J, YANG T N. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nature Communications, 2016, 7: 13807.
DOI PMID |
| [4] |
YAMAMOTO N, YAMASHITA Y, HOSONO Y, et al. Electrical and physical properties of repoled PMN-PT single crystal sliver transducer. Sensors and Actuators A: Physical, 2013, 200(1): 16.
DOI URL |
| [5] |
WANG D, CAO M, ZHANG S J, et al. Phase diagram and properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 polycrystalline ceramics. Journal of the European Ceramic Society, 2012, 32(2): 433.
DOI URL |
| [6] |
WU J, CHANG Y F, YANG B, et al. Densification behavior and electrical properties of CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3- PbTiO3 ternary ceramics. Ceramics International, 2016, 42(6): 7223.
DOI URL |
| [7] |
ZHAO L Y, HOU Y D, CHANG L M, et al. Microstructure and electrical properties of 0.5PZN-0.5PZT relaxor ferroelectrics close to the morphotropic phase boundary. Journal of Materials Research, 2011, 24(6): 2029.
DOI URL |
| [8] |
RAMESSH G, RAMACHANDRA M S, SIVASUBRAMANIAN V, et al. Electrocaloric effect in (1-x)PIN-xPT relaxor ferroelectrics. Journal of Alloys Compounds, 2016, 663: 444.
DOI URL |
| [9] |
QI X D, SUN E W, WANG J J, et al. Electromechanical properties of Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics. Ceramics International, 2016, 42(14): 15332.
DOI URL |
| [10] | LUO N, ZHANG S J, QIANG L, et al. New Pb(Mg1/3Nb2/3)O3- Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 quaternary ceramics: morphotropic phase boundary design and electrical properties. ACS Applied Materials & Interfaces, 2016, 8(24): 15506. |
| [11] |
LI C C, XU B, LIN D B. Atomic-scale origin of ultrahigh piezoelectricity in samarium-doped PMN-PT ceramics. Physical Review B, 2020, 101(14): 140102.
DOI URL |
| [12] |
FENG X Y, LIU J T, GAO F, et al. Effect of sintering atmosphere on the microstructure and electrical properties of Pb(Zr1/2Ti1/2)O3- Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33: 11613.
DOI |
| [13] |
FENG X Y, LI L L, XU X Y, et al. Microstructure evolution and properties of textured, Pb(Zr1/2Ti1/2)O3-Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3 ceramics with plate-like BaZr0.1Ti0.9O3 template. Journal of Alloys and Compounds, 2024, 1002: 175439.
DOI URL |
| [14] |
LI F, ZHANG S J, XU Z. Piezoelectricity-an important property for ferroelectrics during last 100 years. Acta Physica Sinica, 2020, 69(21): 217703.
DOI URL |
| [15] |
XU X Y, FENG X Y, GAO F, et al. Phase structure and electrical properties of 0.28PIN-0.32PZN-(0.4-x)PT-xPZ piezoelectric ceramics. Crystals, 2023, 13(9): 1362.
DOI URL |
| [16] |
LIM J B, ZHANG S J, SHROUT T R. Modified Pb(Yb,Nb)O3- PbZrO3-PbTiO3 ternary system for high temperature applications. Ceramics International, 2012, 38(1): 277.
DOI URL |
| [17] |
YOO J Y, LEE S H, LEE K S. Piezoelectric and dielectric properties of low temperature sintering Pb(Zn1/2W1/2)O3- Pb(Mn1/3Nb2/3)O3-Pb(Zr,Ti)O3 ceramics. Transactions on Electrical and Electronic Materials, 2008, 9(3): 91.
DOI URL |
| [18] |
GUO Q H, LI F, XIA F Q, et al. Piezoelectric ceramics with high piezoelectricity and broad temperature usage range. Journal of Materiomics, 2021, 7: 683.
DOI URL |
| [19] |
WANG P B, GUO Q H, LI F, et al. Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3ternary ceramics with temperature-insensitive and superior piezoelectric property. Journal of European Ceramic Society, 2022, 42: 3848.
DOI URL |
| [20] |
WEI D D, HUANG H. Low-temperature sintering and enhanced piezoelectric properties of random and textured PIN-PMN-PT ceramics with Li2CO3. Journal of the American Ceramic Society, 2017, 100(3): 1073.
DOI URL |
| [21] |
LIN D, ZHANG S J, GORZKOWSKI E, et al. Investigation of morphotropic phase boundaries in PIN-PSN-PT relaxor ferroelectric ternary systems with high Tr-t and Tc phase transition temperatures. Journal of the European Ceramic Society, 2017, 37(8): 2813.
DOI URL |
| [1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
| [2] | ZHANG Jiawei, CHEN Ning, CHENG Yuan, WANG Bo, ZHU Jianguo, JIN Cheng. Electrical Properties of Bismuth Layered Piezoelectric Bi4Ti3O12 Ceramics with A/B-site Doping [J]. Journal of Inorganic Materials, 2025, 40(6): 690-696. |
| [3] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
| [4] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
| [5] | HU Qinghao, LIU Xingchong, PENG Yongshan, HOU Mengjun, HE Tanggui, TANG Anmin. Effect of Acesulfame Potassium Modified SnO2 Electron Transport Layer on Performance of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2025, 40(11): 1261-1267. |
| [6] | LÜ Xinyi, XIANG Hengyang, ZENG Haibo. Long-range Ordered Films Boost Efficient Perovskite Quantum Dot Light-emitting Devices [J]. Journal of Inorganic Materials, 2025, 40(1): 111-112. |
| [7] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
| [8] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
| [9] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
| [10] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
| [11] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
| [12] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
| [13] | LIU Suolan, LUAN Fuyuan, WU Zihua, SHOU Chunhui, XIE Huaqing, YANG Songwang. In-situ Growth of Conformal SnO2 Layers for Efficient Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1397-1403. |
| [14] | WANG Yu, XIONG Hao, HUANG Xiaokun, JIANG Linqin, WU Bo, LI Jiansheng, YANG Aijun. Regulation of Low-dose Stannous Iso-octanoate for Two-step Prepared Sn-Pb Alloyed Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1339-1347. |
| [15] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||