Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (1): 23-30.DOI: 10.15541/jim20240289
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHANG Li1(), GUAN Haoyang1, ZHENG Qining1, HONG Zhiliang2, WANG Jiaxuan1, XING Ning1, LI Mei1, LIU Yongsheng1, ZHANG Chengyu1(
)
Received:
2024-06-13
Revised:
2024-09-02
Published:
2025-01-20
Online:
2024-09-02
Contact:
ZHANG Chengyu, professor. E-mail: cyzhang@nwpu.edu.cnAbout author:
ZHANG Li (1999-), male, Master candidate. E-mail: li.zhang0606@mail.nwpu.edu.cn
Supported by:
CLC Number:
ZHANG Li, GUAN Haoyang, ZHENG Qining, HONG Zhiliang, WANG Jiaxuan, XING Ning, LI Mei, LIU Yongsheng, ZHANG Chengyu. Creep Properties and Damage Mechanisms of SiCf/SiC-SiYBC Prepared by Melt Infiltration[J]. Journal of Inorganic Materials, 2025, 40(1): 23-30.
Material | Process | Fiber | Temperature/℃ | Stress/MPa | Creep rupture time/h | Source |
---|---|---|---|---|---|---|
SiCf/SiC-SiYBC | MI | Cansas3300 | 1300 | 100 | >1000 | This work |
1300 | 120 | 52.70 | ||||
1350 | 70 | >500 | ||||
1350 | 85 | >500 | ||||
1350 | 100 | 24.18 | ||||
1400 | 60 | >1000 | ||||
1400 | 70 | 195.12 | ||||
1400 | 85 | 1.32 | ||||
1400 | 100 | 3.78 | ||||
SiCf/SiC[ | CVI | Cansas-II | 1200 | 110 | >560 | Northwestern Polytechnical University, China |
1300 | 100 | 70 | ||||
1400 | 100 | 1.60 | ||||
SiCf/SiC[ | CVI | Cansas3300 | 1300 | 100 | >800 | |
1350 | 80 | >1000 | ||||
1400 | 100 | 82 | ||||
SiCf/SiC[ | CVI | Hi-Nicalon | 1300 | 75 | 111.10 | DuPont Lanxide Composites, America |
1300 | 120 | 0.83 | ||||
Enhanced SiCf/SiC[ | CVI | Hi-Nicalon | 1300 | 90 | 5.28 | |
1300 | 150 | 0.23 | ||||
SiCf/SiC[ | MI | Hi-Nicalon Type S | 1315 | 69 | 315 | GE |
1315 | 103 | 190 | ||||
1400 | 69 | 150 | ||||
1400 | 103 | 38 | ||||
SiCf/SiC[ | MI | Sylramic-iBN | 1204 | 165 | 1269 | |
1315 | 103 | 500 | ||||
CVI | Sylramic-iBN | 1450 | 86 | >300 | ||
SiCf/SiC[ | CVI | Hi-Nicalon Type S | 1400 | 120 | >200 | SNECMA, France |
Table 1 Comparison of creep rupture time of MI SiCf/SiC-SiYBC and related materials in air at home and abroad
Material | Process | Fiber | Temperature/℃ | Stress/MPa | Creep rupture time/h | Source |
---|---|---|---|---|---|---|
SiCf/SiC-SiYBC | MI | Cansas3300 | 1300 | 100 | >1000 | This work |
1300 | 120 | 52.70 | ||||
1350 | 70 | >500 | ||||
1350 | 85 | >500 | ||||
1350 | 100 | 24.18 | ||||
1400 | 60 | >1000 | ||||
1400 | 70 | 195.12 | ||||
1400 | 85 | 1.32 | ||||
1400 | 100 | 3.78 | ||||
SiCf/SiC[ | CVI | Cansas-II | 1200 | 110 | >560 | Northwestern Polytechnical University, China |
1300 | 100 | 70 | ||||
1400 | 100 | 1.60 | ||||
SiCf/SiC[ | CVI | Cansas3300 | 1300 | 100 | >800 | |
1350 | 80 | >1000 | ||||
1400 | 100 | 82 | ||||
SiCf/SiC[ | CVI | Hi-Nicalon | 1300 | 75 | 111.10 | DuPont Lanxide Composites, America |
1300 | 120 | 0.83 | ||||
Enhanced SiCf/SiC[ | CVI | Hi-Nicalon | 1300 | 90 | 5.28 | |
1300 | 150 | 0.23 | ||||
SiCf/SiC[ | MI | Hi-Nicalon Type S | 1315 | 69 | 315 | GE |
1315 | 103 | 190 | ||||
1400 | 69 | 150 | ||||
1400 | 103 | 38 | ||||
SiCf/SiC[ | MI | Sylramic-iBN | 1204 | 165 | 1269 | |
1315 | 103 | 500 | ||||
CVI | Sylramic-iBN | 1450 | 86 | >300 | ||
SiCf/SiC[ | CVI | Hi-Nicalon Type S | 1400 | 120 | >200 | SNECMA, France |
Fig. 4 Creep fractures and crack distributions of MI SiCf/SiC-SiYBC at different creep conditions Creep fractures: (a) 1400 ℃/70 MPa, 195.12 h; (b) 1400 ℃/100 MPa, 3.78 h; (c) 1350 ℃/100 MPa, 24.18 h Crack distributions: (d) 1400 ℃/70 MPa, 195.12 h; (e) 1400 ℃/100 MPa, 3.78 h; (f) 1350 ℃/100 MPa, 24.18 h
Fig. 5 Oxidative damages of MI SiCf/SiC-SiYBC at different creep conditions (a) 1300 ℃/100 MPa, 1000 h; (b) 1350 ℃/100 MPa, 24.18 h; (c) 1400 ℃/70 MPa, 195.12 h; (d) 1400 ℃/100 MPa, 3.78 h
Fig. 7 TEM images of the interface and fiber in the oxidation zone before and after creep As-received: (a, c) TEM, (e, g) HRTEM images and SAED patterns of (a, e) interface and (c, g) fiber Creep at 1400 ℃/70 MPa: (b, d) TEM, (f, h) HRTEM images and SAED pattern of (b, f) interface and (d, h) fiber
[1] |
刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战. 材料工程, 2019, 47(2): 1.
DOI |
[2] | 李崇俊. SiC/SiC复合材料及其应用. 高科技纤维与应用, 2013, 38(3): 1. |
[3] | ALMANSOUR A. Characterizing ceramic-matrix composites to improve durability. American Ceramic Society Bulletin, 2016, 95(5): 35. |
[4] | KOWBEL W, BRUCE C A, TSOU K L, et al. High thermal conductivity SiC/SiC composites for fusion applications. Journal of Nuclear Materials, 2000, 283: 570. |
[5] | BHATT R T, HALBIG M C. Creep properties of melt infiltrated SiC/SiC composites with Sylramic™-iBN and Hi-Nicalon™-S fibers. International Journal of Applied Ceramic Technology, 2022, 19(2): 1074. |
[6] | DICARLO J A, ROODE M V. Ceramic composite development for gas turbine engine hot section components. ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, 2006: 221. |
[7] | BHATT R T, KISER J D. Creep behavior and failure mechanisms of CVI and PIP SiC/SiC composites at temperatures to 1650 ℃ in air. Journal of the European Ceramic Society, 2021, 41(13): 6196. |
[8] | CHRISTENSEN V L, ZOK F W. Insights into internal oxidation of SiC/BN/SiC composites. Journal of the American Ceramic Society, 2023, 106(2): 1561. |
[9] | VAUGHN W L, MAAHS H G. Active-to-passive transition in the oxidation of silicon carbide and silicon nitride in air. Journal of the American Ceramic Society, 1990, 73(6): 1540. |
[10] | 黄璇璇, 郭双全, 姚改成, 等. 航空发动机SiC/SiC复合材料环境障碍涂层研究进展. 航空维修与工程, 2017(2): 28. |
[11] | TEJERO-MARTIN D, BENNETT C, HUSSAIN T. A review on environmental barrier coatings: history, current state of the art and future developments. Journal of the European Ceramic Society, 2021, 41(3): 1747. |
[12] | HE F, CAO Y J, LIU Y S, et al. Self-healing and failure behavior of yttrium silicate coated SiCf/SiC composites in air at elevated temperatures. Ceramics International, 2023, 49(3): 5335. |
[13] | LI J X, LIU Y S, HE F, et al. Preparation and properties of SiC/SiC-SiYC with excellent water-oxygen corrosion resistance. Journal of the European Ceramic Society, 2023, 43(14): 6606. |
[14] | ZHANG B H, LIU Y S, GAO Y Q, et al. Water and oxygen corrosion resistance of SiCf/SiC-SiYBC composites prepared by reactive melt infiltration at 1300 ℃-1500 ℃. International Journal of Applied Ceramic Technology, 2024, 21(2): 1094. |
[15] | 高雨晴. 反应熔渗法制备抗水腐蚀Si-Y-C陶瓷基复合材料的工艺研究. 西安: 西北工业大学硕士学位论文, 2021. |
[16] | ZHU S J, MIZUNO M, NAGANO Y, et al. Creep and fatigue behavior in an enhanced SiC/SiC composite at high temperature. Journal of the American Ceramic Society, 1998, 81(9): 2269. |
[17] | JING K K, GUAN H Y, ZHU S Y, et al. Tensile creep behavior of Cansas-II SiCf/SiC composites at high temperatures. Journal of Inorganic Materials, 2023, 38(2): 177. |
[18] | 管皞阳. 国产三代2D-SiCf/SiC的高温拉伸蠕变性能及损伤机理. 西安: 西北工业大学硕士学位论文, 2024. |
[19] | ZHU S J, MIZUNO M, KAGAWA Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review. Composites Science and Technology, 1999, 59(6): 833. |
[20] | LAMON J. Properties and characteristics of SiC and SiC/SiC composites//KONINGS R J M, STOLLER R E. Comprehensive nuclear materials. Second Edition. Amsterdam: Elsevier, 2020: 400. |
[21] | MORSCHER G N. Tensile creep of melt-infiltrated SiC/SiC composites with unbalanced Sylramic-iBN fiber architectures. International Journal of Applied Ceramic Technology, 2011, 8(2): 239. |
[22] | LACOMBE A, SPRIET P, HABAROU G, et al. Ceramic matrix composites to make breakthroughs in aircraft engine performance. 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, 2009: 2675. |
[23] | HE F, LIU Y S, LI J X, et al. The impact of water and oxygen contents on the corrosion performance of yttrium silicate modified SiCf/SiC composites under high temperature conditions. Journal of the European Ceramic Society, 2024, 44(4): 2065. |
[24] | JACOBSON N S, MYERS D L. Active oxidation of SiC. Oxidation of Metals, 2011, 75(1): 1. |
[25] | NARUSHIMA T, GOTO T, IGUCHI Y, et al. High-temperature oxidation of chemically vapor-deposited silicon carbide in wet oxygen at 1823 to 1923 K. Journal of the American Ceramic Society, 1990, 73(12): 3580. |
[26] | PRESSER V, NICKEL K G. Silica on silicon carbide. Critical Reviews in Solid State and Materials Sciences, 2008, 33(1): 1. |
[27] | 曲诚诚. 国产SiC纤维的性能表征及抗氧化行为研究. 西安: 西北工业大学硕士学位论文, 2021. |
[1] | WANG Wenting, XU Jingjun, MA Ke, LI Meishuan, LI Xingchao, LI Tongqi. Oxidation Behavior at 1000-1300 ℃ in air of Ti2AlC-20TiB2 Synthesized by in-situ Reaction/Hot Pressing [J]. Journal of Inorganic Materials, 2025, 40(1): 31-38. |
[2] | QUAN Wenxin, YU Yiping, FANG Bing, LI Wei, WANG Song. Oxidation Behavior and Meso-macro Model of Tubular C/SiC Composites in High-temperature Environment [J]. Journal of Inorganic Materials, 2024, 39(8): 920-928. |
[3] | TAN Min, CHEN Xiaowu, YANG Jinshan, ZHANG Xiangyu, KAN Yanmei, ZHOU Haijun, XUE Yudong, DONG Shaoming. Microstructure and Oxidation Behavior of ZrB2-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2024, 39(8): 955-964. |
[4] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | ZHENG Bin, KANG Kai, ZHANG Qing, YE Fang, XIE Jing, JIA Yan, SUN Guodong, CHENG Laifei. Preparation and Thermal Stability of Ti3SiC2 Ceramics by Polymer Derived Ceramics Method [J]. Journal of Inorganic Materials, 2024, 39(6): 733-740. |
[8] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[9] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[10] | ZHANG Xiangsong, LIU Yetong, WANG Yongying, WU Zirui, LIU Zhenzhong, LI Yi, YANG Juan. Self-assembled Platinum-iridium Alloy Aerogels and Their Efficient Electrocatalytic Ammonia Oxidation Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 511-520. |
[11] | WANG Lei, LI Jianjun, NING Jun, HU Tianyu, WANG Hongyang, ZHANG Zhanqun, WU Linxin. Enhanced Degradation of Methyl Orange with CoFe2O4@Zeolite Catalyst as Peroxymonosulfate Activator: Performance and Mechanism [J]. Journal of Inorganic Materials, 2023, 38(4): 469-476. |
[12] | JING Kaikai, GUAN Haoyang, ZHU Siyu, ZHANG Chao, LIU Yongsheng, WANG Bo, WANG Jing, LI Mei, ZHANG Chengyu. Tensile Creep Behavior of Cansas-II SiCf/SiC Composites at High Temperatures [J]. Journal of Inorganic Materials, 2023, 38(2): 177-183. |
[13] | YU Yefan, XU Ling, NI Zhongbing, SHI Dongjian, CHEN Mingqing. Prussian Blue Modified Biochar: Preparation and Adsorption of Ammonia Nitrogen from Sewage [J]. Journal of Inorganic Materials, 2023, 38(2): 205-212. |
[14] | DU Jiaheng, FAN Xinli, XIAO Dongqin, YIN Yiran, LI Zhong, HE Kui, DUAN Ke. Electrophoretic Coating of Magnesium Oxide on Microarc-oxidized Titanium and Its Biological Properties [J]. Journal of Inorganic Materials, 2023, 38(12): 1441-1448. |
[15] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||