Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (1): 31-38.DOI: 10.15541/jim20240352
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Wenting1,2(), XU Jingjun1(
), MA Ke1, LI Meishuan1, LI Xingchao3, LI Tongqi3
Received:
2024-07-27
Revised:
2024-09-23
Published:
2025-01-20
Online:
2024-09-27
Contact:
XU Jingjun, associate professor. E-mail: jjxu@imr.ac.cnAbout author:
WANG Wenting (1992-), female, PhD candidate. E-mail: wtwang16s@imr.ac.cn
Supported by:
CLC Number:
WANG Wenting, XU Jingjun, MA Ke, LI Meishuan, LI Xingchao, LI Tongqi. Oxidation Behavior at 1000-1300 ℃ in air of Ti2AlC-20TiB2 Synthesized by in-situ Reaction/Hot Pressing[J]. Journal of Inorganic Materials, 2025, 40(1): 31-38.
Temperature | 1000 ℃ | 1100 ℃ | 1200 ℃ | 1300 ℃ | |
---|---|---|---|---|---|
Ti2AlC- 20TiB2 | k | 0.0656 | 0.1355 | 0.0920 | 0.2849 |
t0 | 0.0918 | 0.0488 | 0.1313 | 0.6860 | |
R2 | 99.50 | 99.47 | 99.72 | 99.77 | |
Ti2AlC | kc | 2.38×10-12 | 1.54×10-11 | 1.12×10-10 | 2.13×10-10 |
Table 1 k, t0, R2 by fitting the oxidation kinetics curves in Fig. 3(a) and kc of Ti2AlC[8]
Temperature | 1000 ℃ | 1100 ℃ | 1200 ℃ | 1300 ℃ | |
---|---|---|---|---|---|
Ti2AlC- 20TiB2 | k | 0.0656 | 0.1355 | 0.0920 | 0.2849 |
t0 | 0.0918 | 0.0488 | 0.1313 | 0.6860 | |
R2 | 99.50 | 99.47 | 99.72 | 99.77 | |
Ti2AlC | kc | 2.38×10-12 | 1.54×10-11 | 1.12×10-10 | 2.13×10-10 |
Fig. 4 XRD patterns of Ti2AlC-20TiB2 composite before and after oxidation at 1000-1300 ℃ in air for 10 h (a) Before oxidation; (b) 1000 ℃; (c) 1100 ℃; (d) 1200 ℃; (e) 1300 ℃
Fig. 5 Surface morphologies of Ti2AlC-20TiB2 composite oxidized at 1000-1300 ℃ in air for 10 h and EDS element mappings of O, Al, and Ti (a) 1000 ℃; (b) 1100 ℃; (c) 1200 ℃; (d) 1300 ℃
Fig. 6 Surface morphologies of Ti2AlC oxidized at 1000-1300 ℃ in air for 10 h and EDS element mappings of O, Al, and Ti (a) 1000 ℃; (b) 1100 ℃; (c) 1200 ℃; (d) 1300 ℃
Fig. 7 Cross-sectional morphologies of Ti2AlC-20TiB2 composite oxidized at 1000-1300 ℃ in air for 10 h and EDS element mappings of O, Al, and Ti (a) 1000 ℃; (b) 1100 ℃; (c) 1200 ℃; (d) 1300 ℃
Fig. 8 Cross-sectional morphologies of Ti2AlC oxidized at 1000-1300 ℃ in air for 10 h and EDS element mappings of O, Al, and Ti (a) 1000 ℃; (b) 1100 ℃; (c) 1200 ℃; (d) 1300 ℃
[1] | BARSOUM M W. The Mn+1AXn phases: a new class of solids: thermodynamically stable nanolaminates. Progress in Solid State Chemistry, 2000, 28: 201. |
[2] | LIN Z J, ZHUO M J, ZHOU Y C, et al. Microstructural characterization of layered ternary Ti2AlC. Acta Materialia, 2006, 54(4): 1009. |
[3] | WANG X H, ZHOU Y C. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. Journal of Materials Science & Technology, 2010, 26(5): 385. |
[4] | ZHOU Y C, SUN Z M. Electronic structure and bonding properties of layered machinable Ti2AlC and Ti2AlN ceramics. Physical Review B, 2000, 61(19): 12570. |
[5] |
PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296(5566): 280.
PMID |
[6] | FRODELIUS J, SONESTED M, BJORKLUND S, et al. Ti2AlC coatings deposited by high velocity oxy-fuel spraying. Surface and Coatings Technology, 2008, 202(24): 5976. |
[7] | TALLMAN D J, ANASORI B, BARSOUM M W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air. Materials Research Letters, 2013, 115(3): 115. |
[8] | WANG X H, ZHOU Y C. High-temperature oxidation behavior of Ti2AlC in air. Oxidation of Metals, 2002, 59(3): 303. |
[9] | ZHANG X H, WANG Y M, CHENG Y, et al. Research progress on ultra-high temperature ceramic composites. Journal of Inorganic Materials, 2024, 39(6): 571. |
[10] | LI C, QIAN Y H, MA C L, et al. Suppressing the anomalous rapid oxidation of Ti3AlC2 by incorporating TiB2. Journal of Materials Science & Technology, 2019, 35(3): 432. |
[11] | LI C, LI M S, ZHOU Y C, et al. In situ synthesis and properties of Ti3AlC2/TiB2 composites. Journal of the American Ceramic Society, 2007, 90(11): 3615. |
[12] | LI M S, LI C, LI J J, et al. Oxidation behavior of a Ti3AlC2/TiB2 composite at 1000-1400 ℃ in air. Journal of the American Ceramic Society, 2010, 93(2): 554. |
[13] | 赵芳, 王明远, 唐香珺, 等. Ti2AlC/TiB2/TiC复相陶瓷的制备及性能研究. 宇航材料工艺, 2016, 46(5): 4. |
[14] | WANG W T, XU J J, ZUO J, et al. Oxidation resistance of in situ reaction/hot pressing synthesized Ti2AlC-20%TiB2 composite at 600-900 ℃ in air. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 739. |
[15] | SUNDBERG M, MALMQVIST G, MAGNUSSON A. Alumina forming high temperature silicides and carbides. Ceramics International, 2004, 30(7): 1899. |
[16] | FU G D, GUI J, WANG Z G, et al. High temperature cyclic oxidation behavior of Ti2AlC/Al2O3 composites at 1100-1300 ℃ in air. China Ceramics, 2014, 50(3): 16. |
[17] | WANG X H, ZHOU Y C. Oxidation behavior of Ti3AlC2 at 1000- 1400 ℃ in air. Corrosion Science, 2003, 45(5): 891. |
[18] | SHEN Y, RUAN Y Z, YU Y. Study on the in-situ synthesis of aluminum titanate sintered by waste aluminum slag. Chinese Journal of Structural Chemistry, 2009, 28(1): 61. |
[19] | LI X Q, XIE X, GONZALEZ-JULIAN J, et al. Mechanical and oxidation behavior of textured Ti2AlC and Ti3AlC2 MAX phase materials. Journal of the European Ceramic Society, 2020, 40(15): 5258. |
[20] | WAGNER C. Beitrag zur theorie des anlaufvorgangs. Zeitschrift für Physikalische Chemie, 1933, 21B(1): 25. |
[21] | LANGENSIEPEN R A, TRESSLER R E, HOWELL P R. A preliminary study of precipitation in Ti4+-doped polycrystalline alumina. Journal of Materials Science, 1983, 18(9): 2771. |
[22] | WANG J Y, ZHOU Y C, LIAO T, et al. A first-principles investigation of the phase stability of Ti2AlC with Al vacancies. Scripta Materialia, 2008, 58(3): 227. |
[23] | LEE D B, PARK S W. High-temperature oxidation of Ti3AlC2 between 1173 and 1473 K in air. Materials Science and Engineering: A, 2006, 434(1/2): 147. |
[24] | SONG Q, ZHANG Z H. Microstructure and self-healing mechanism of B4C-TiB2-SiC composite ceramic after pre-oxidation behaviour. Ceramics International, 2022, 48(17): 25458. |
[25] | YU W B, VALLET M, LEVRAUT B, et al. Oxidation mechanisms in bulk Ti2AlC: influence of the grain size. Journal of the European Ceramic Society, 2004, 40(5): 1820. |
[26] | XU L D, ZHU D G, LIU Y L, et al. Effect of texture on oxidation resistance of Ti3AlC2. Journal of the European Ceramic Society, 2018, 38(10): 3417. |
[1] | ZHANG Li, GUAN Haoyang, ZHENG Qining, HONG Zhiliang, WANG Jiaxuan, XING Ning, LI Mei, LIU Yongsheng, ZHANG Chengyu. Creep Properties and Damage Mechanisms of SiCf/SiC-SiYBC Prepared by Melt Infiltration [J]. Journal of Inorganic Materials, 2025, 40(1): 23-30. |
[2] | WEN Zhipeng, WEI Yi, HOU Xianghua, GUO Jiawen, LI Qu, ZHU Manqing, ZHANG Jiahao, PAN Kai, WU Lian. Research Progress of Bentonite-based Functional Materials in Electrochemical Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(12): 1301-1315. |
[3] | HONG Peiping, LIANG Long, WU Lian, MA Yingkang, PANG Hao. Structure Regulation of ZIF-67 and Its Adsorption Properties for Chlortetracycline Hydrochloride [J]. Journal of Inorganic Materials, 0, (): 240382-240382. |
[4] | MA Yongjie, LIU Yongsheng, GUAN Kang, ZENG Qingfeng. Gas-phase Kinetic Study of Pyrolysis in the System of CH4+C2H5OH+Ar [J]. Journal of Inorganic Materials, 2024, 39(11): 1235-1244. |
[5] | DING Ningning, SUN Jianhua, WEI Xu, SUN Lixia. Monitoring Ammonia at Room Temperature of p-Aminobenzene Sulfonic Acid Modified MoO3/PPy Composites [J]. Journal of Inorganic Materials, 2024, 39(11): 1245-1253. |
[6] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[7] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[8] | QUAN Wenxin, YU Yiping, FANG Bing, LI Wei, WANG Song. Oxidation Behavior and Meso-macro Model of Tubular C/SiC Composites in High-temperature Environment [J]. Journal of Inorganic Materials, 2024, 39(8): 920-928. |
[9] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[10] | YOU Bojie, LI Bo, LI Xuqin, MA Xuehan, ZHANG Yi, CHENG Laifei. Thermal Shock Damage and In-plane Shear Performance Degradation of 2D SiCf/SiC at Medium Temperature [J]. Journal of Inorganic Materials, 2024, 39(12): 1367-1376. |
[11] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[12] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[13] | ZHANG Yuyu, WU Yicheng, SUN Jia, FU Qiangang. Preparation and Wave-absorbing Properties of Polymer-derived SiHfCN Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 681-690. |
[14] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[15] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||