Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (8): 885-892.DOI: 10.15541/jim20230026
Special Issue: 【信息功能】介电、铁电、压电材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Junsheng(), ZENG Liang, LIU Rongjun, WANG Yanfei, WAN Fan, LI Duan(
)
Received:
2023-01-16
Revised:
2023-02-09
Published:
2023-08-20
Online:
2023-03-17
Contact:
LI Duan, associate professor. E-mail: duan_li_2016@163.comAbout author:
LI Junsheng (1982-), male, associate professor. E-mail: charlesljs@163.com
Supported by:
CLC Number:
LI Junsheng, ZENG Liang, LIU Rongjun, WANG Yanfei, WAN Fan, LI Duan. Functional Strontium Tantalum Oxynitride Ceramics: Efficient Synthesis, Densification and Dielectric Performance[J]. Journal of Inorganic Materials, 2023, 38(8): 885-892.
Sample | Synthesis temperature /℃ | Heating rate /(℃·min-1) | Composition/% (in atomic) | O/N | |||
---|---|---|---|---|---|---|---|
Sr | Ta | O | N | ||||
STON-1000-10 | 1000 | 10 | 9.19 | 11.05 | 61.51 | 18.25 | 3.37 |
STON-800-100 | 800 | 100 | 14.59 | 7.74 | 57.10 | 20.57 | 2.78 |
STON-900-100 | 900 | 100 | 12.60 | 10.98 | 50.24 | 26.18 | 1.92 |
STON-1000-100 | 1000 | 100 | 11.74 | 11.92 | 47.83 | 28.51 | 1.68 |
STON-1100-100 | 1100 | 100 | 10.63 | 13.02 | 44.86 | 31.49 | 1.42 |
STON-1200-100 | 1200 | 100 | 10.11 | 13.50 | 44.17 | 32.22 | 1.37 |
Table 1 Synthesis conditions (heating strategy) and element content
Sample | Synthesis temperature /℃ | Heating rate /(℃·min-1) | Composition/% (in atomic) | O/N | |||
---|---|---|---|---|---|---|---|
Sr | Ta | O | N | ||||
STON-1000-10 | 1000 | 10 | 9.19 | 11.05 | 61.51 | 18.25 | 3.37 |
STON-800-100 | 800 | 100 | 14.59 | 7.74 | 57.10 | 20.57 | 2.78 |
STON-900-100 | 900 | 100 | 12.60 | 10.98 | 50.24 | 26.18 | 1.92 |
STON-1000-100 | 1000 | 100 | 11.74 | 11.92 | 47.83 | 28.51 | 1.68 |
STON-1100-100 | 1100 | 100 | 10.63 | 13.02 | 44.86 | 31.49 | 1.42 |
STON-1200-100 | 1200 | 100 | 10.11 | 13.50 | 44.17 | 32.22 | 1.37 |
Sample | Heating rate/ (℃·min-1) | Sintering temperature/℃ | Dwell time/min | Density/ (g·cm-3) | Relative density/% | Open porosity/% | (Open porosity/ Total porosity)/% |
---|---|---|---|---|---|---|---|
STON-SPS-1 | 300 | 1100 | 1 | 5.69 | 70.94 | 3.12 | 10.77 |
STON-SPS-2 | 300 | 1200 | 1 | 6.30 | 78.54 | 7.54 | 35.28 |
STON-SPS-3 | 300 | 1250 | 0 | 6.93 | 86.40 | 4.37 | 21.90 |
STON-SPS-4 | 300 | 1250 | 1 | 7.13 | 88.89 | 0.43 | 3.89 |
STON-SPS-5 | 300 | 1250 | 3 | 7.24 | 90.26 | 0.57 | 5.88 |
STON-SPS-6 | 200 | 1300 | 1 | 7.37 | 91.88 | 0.69 | 8.53 |
STON-SPS-7 | 300 | 1300 | 1 | 7.55 | 94.13 | 0.55 | 9.52 |
STON-SPS-8 | 300 | 1400 | 1 | 7.67 | 95.62 | 0.49 | 11.53 |
Table 2 Density and porosity of oxynitride ceramics prepared by different SPS processes (100 MPa)
Sample | Heating rate/ (℃·min-1) | Sintering temperature/℃ | Dwell time/min | Density/ (g·cm-3) | Relative density/% | Open porosity/% | (Open porosity/ Total porosity)/% |
---|---|---|---|---|---|---|---|
STON-SPS-1 | 300 | 1100 | 1 | 5.69 | 70.94 | 3.12 | 10.77 |
STON-SPS-2 | 300 | 1200 | 1 | 6.30 | 78.54 | 7.54 | 35.28 |
STON-SPS-3 | 300 | 1250 | 0 | 6.93 | 86.40 | 4.37 | 21.90 |
STON-SPS-4 | 300 | 1250 | 1 | 7.13 | 88.89 | 0.43 | 3.89 |
STON-SPS-5 | 300 | 1250 | 3 | 7.24 | 90.26 | 0.57 | 5.88 |
STON-SPS-6 | 200 | 1300 | 1 | 7.37 | 91.88 | 0.69 | 8.53 |
STON-SPS-7 | 300 | 1300 | 1 | 7.55 | 94.13 | 0.55 | 9.52 |
STON-SPS-8 | 300 | 1400 | 1 | 7.67 | 95.62 | 0.49 | 11.53 |
[1] | MARCHAND R, PASTUSZAK R, LAURENT Y, et al. Structure cristalline de Nd2AlO3N. Détermination de L Ordre oxygène-azote par diffraction de neutrons. Revue Dechimie Minerale, 1982, 19(6): 684. |
[2] | MARCHAND R, PORS F, LAURENT Y. Préparation et caractérisation de nouveaux oxynitrures à structure perovskite. Revue Internationale des Hautes Températures et des Réfractaires, 1986, 23(1): 11. |
[3] |
ZHANG X, LIU X, YAN J, et al. Preparation and property of high entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 perovskite ceramics. Journal of Inorganic Materials, 2021, 36(4): 379.
DOI URL |
[4] |
LI S, SONG G, ZHANG Y, et al. Preparation and physical property of BTO-based multiferroic Ceramics. Journal of Inorganic Materials, 2022, 37(1): 79.
DOI URL |
[5] |
FUERTES A. Metal oxynitrides as emerging materials with photocatalytic and electronic properties. Materials Horizons, 2015, 2(5): 453.
DOI URL |
[6] | AGUIAR R. Synthesis, Properties and Applications of AB(O,N)3 Oxynitride Perovskites. Augsburg: University of Augsburg PhD Thesis, 2009. |
[7] | LI W. Formability, Synthesis and Properties of Perovskite-type Oxynitrides. Darmstadt: Technische Universität Darmstadt PhD Thesis, 2015. |
[8] |
EBBINGHAUS S G, AGUIAR R, WEIDENKAFF A, et al. Topotactical growth of thick perovskite oxynitride layers by nitridation of single crystalline oxides. Solid State Sciences, 2008, 10(6): 709.
DOI URL |
[9] |
SEO J, NISHIYAMA H, YAMADA T, et al. Visible-light- responsive photoanodes for highly active, stable water oxidation. Angewandte Chemie International Edition, 2018, 57(28): 8396.
DOI URL |
[10] | LI D, ZENG L, LI B, et al. Rapid synthesis of dielectric tantalum- based oxynitrides. Materials and Design, 2020, 187: 108416. |
[11] | KIM Y I, WOODWARD P M, BABA-KISHI K Z, et al. Characterization of the structural, optical, and dielectric properties of oxynitride perovskites AMO2N (A=Sr, Ba, Ca; M=Ta, Nb). Materials Chemistry, 2004, 16(7): 1267. |
[12] |
ZHANG Y R, MASUBUCHI Y, MOTOHASHI T, et al. Hot isostatic press sintering and dielectric properties of SrTaO2N ceramics. Ceramics International, 2013, 39(3): 3377.
DOI URL |
[13] |
CHEN D, HABU D, MASUBUCHI Y, et al. Partial nitrogen loss in SrTaO2N and LaTiO2N oxynitride perovskites. Solid State Sciences, 2016, 54(1): 2.
DOI URL |
[14] |
HOSONO A, MASUBUCHI Y, KIKKAWA S, et al. Sintering behavior of dielectric SrTaO2N under high pressure of nitrogen. Ceramics International, 2017, 43(2): 2737.
DOI URL |
[15] |
RACHEL A, EBBINGHAUS S G, GÜNGERICH M, et al. Tantalum and niobium perovskite oxynitrides: synthesis and analysis of the thermal behaviour. Thermochim Acta, 2006, 438(1): 134.
DOI URL |
[16] |
CLARKE S J, HARDSTONE K A, MICHIE C W, et al. Rosseinsky. High-temperature synthesis and structures of perovskite and n=1 Ruddlesden-popper tantalum oxynitrides. Chemistry of Materials, 2002, 14(6): 2664.
DOI URL |
[17] |
SUN S K, MOTOHASHI T, MASUBUCHI Y, et al. Direct synthesis of SrTaO2N from SrCO3/Ta3N5 involving CO evolution. Journal of the European Ceramic Society, 2014, 34(16): 4451.
DOI URL |
[18] | LI D, ZHANG C R, LI B, et al. Research progress in preparation of nitride ceramic materials by urea process. Aerospace Material Technology, 2011, 41(5): 1. |
[19] |
WANG M H, ZHONG H B, FAN Y C, et al. Spark plasma sintering of bioactive Ca2MgSi2O7 Ceramics. Journal of Inorganic Materials, 2017, 32(8): 825.
DOI URL |
[20] |
LI D, LI W, FASEL C, et al. Sinterability of the oxynitride LaTiO2N with perovskite-type structure. Journal of Alloys and Compounds, 2014, 586: 567.
DOI URL |
[21] | LI D, MORAES E G, GUO P, et al. Rapid sintering of silicon nitride foams decorated with one-dimensional nanostructures by intense thermal radiation. Science and Technology of Advanced Materials, 2014, 15(4): 045003. |
[22] |
LI D, SHEN Z. Rapid sintering of ceramics with gradient porous structure by asymmetric thermal radiation. Journal of the American Ceramic Society, 2015, 98(12): 3631.
DOI URL |
[23] |
HOSONO A, SUN S K, MASUBUCHI Y, et al. Additive sintering and post-ammonolysis of dielectric BaTaO2N oxynitride perovskite. Journal of the European Ceramic Society, 2016, 36(14): 3341.
DOI URL |
[24] |
MASUBUCHI Y, KAWAMURA F, TANIGUCHI T, et al. High pressure densi-fication and dielectric properties of perovskite-type oxynitride SrTaO2N. Journal of the European Ceramic Society, 2015, 35(4): 1191.
DOI URL |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[3] | LIU Yan, QIN Xianpeng, GAN Lin, ZHOU Guohong, ZHANG Tianjin, WANG Shiwei, CHEN Hetuo. Preparation of Sub-micron Spherical Y2O3 Particles and Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 691-696. |
[4] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[5] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[6] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[7] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[8] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[9] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[10] | DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering [J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096. |
[11] | DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors [J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030. |
[12] | WANG Run, XIANG Hengyang, ZENG Haibo. Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs [J]. Journal of Inorganic Materials, 2023, 38(9): 1062-1068. |
[13] | WANG Machao, TANG Yangmin, DENG Mingxue, ZHOU Zhenzhen, LIU Xiaofeng, WANG Jiacheng, LIU Qian. Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission [J]. Journal of Inorganic Materials, 2023, 38(9): 1083-1088. |
[14] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[15] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||